1 |
ABDELKAREEM M A, ELSAID K, WILBERFORCE T, et al. Environmental aspects of fuel cells: A review[J]. The Science of the Total Environment, 2020, 752: doi: 10.1016/j.scitotenv.2020.141803.
|
2 |
MOHAMMADSHAHI S S, GRAY E M, WEBB C J. A review of mathematical modeling of metal- hydride systems for hydrogen storage applications[J]. International Journal of Hydrogen Energy, 2016, 41: 3470-3484.
|
3 |
DUTTA S. A review on production, storage of hydrogen and its utilization as an energy resource[J]. Journal of Industrial and Engineering Chemistry, 2014, 20: 1148-1156.
|
4 |
DAWOOD F, ANDA M, SHAFIULLAH G M. Hydrogen production for energy: An overview[J]. International Journal of Hydrogen Energy, 2020, 45(7): 3847-3869.
|
5 |
TONG W M, FORSTER M, DIONIQI F, et al. Electrolysis of low-grade and saline surface water[J]. Nature Energy, 2020, 5(5), 367-377.
|
6 |
GROTE J P, ZERADJANIN A R, CHEREVKO S, et al. Screening of material libraries for electrochemical CO2 reduction catalysts-Improving selectivity of Cu by mixing with Co[J]. Journal of Catalysis, 2016, 343: 248-256.
|
7 |
DURBIN D J, MALARDIER J C. Review of hydrogen storage techniques for on board vehicle applications[J]. International Journal of Hydrogen Energy, 2013, 38: 14595-14617.
|
8 |
HOECKE L, LAFFINEUR L, CAMPE R, et al. Challenges in the use of hydrogen for maritime applications[J]. Energy & Environmental Science, 2021, 14(2): 815-843.
|
9 |
ZHENG J Y, LIU X X, XU P, et al. Development of high pressure gaseous hydrogen storage technologies[J]. International Journal of Hydrogen Energy, 2012, 37(1): 1048-1057.
|
10 |
PREUSTER P, ALEKSEEV A, WASSERSCHEID P. Hydrogen storage technologies for future energy systems[J]. Annual Review of Chemical and Biomolecular Engineering, 2017, 8: 445-471.
|
11 |
KUBAS G, KLUWER J. Metal dihydrogen and Ó-bond complexes: Structure, theory and reactivity[M]. New York: Springer Science & Business Media, 2001.
|
12 |
KALAMSE V, WADNERKAR N, CHAUDHARI A. Multi-functionalized naphthalene complexes for hydrogen storage[J]. Energy, 2013, 49: 469-474.
|
13 |
The U.S. Department of Energy's Office of Energy Efficiency and Renewable Energy. DOE technical targets for onboard hydrogen storage for light-duty vehicles[EB/OL]. 2015. https://www.energy.gov/eere/fuelcells/doe-technical-targets-onboard-hydrogen-storage-lightduty-vehicles.
|
14 |
SATYAPAL S, PETROVIC J, READ C, et al. The U.S. department of energy's national hydrogen storage project: Progress towards meeting hydrogen-powered vehicle requirements[J]. Catalysis Today, 2007, 120: 246-256.
|
15 |
LI M X, BAI Y F, ZHANG C Z. Review on the research of hydrogen storage system fast refueling in fuel cell vehicle[J]. International Journal of Hydrogen Energy, 2019, 44(21): 10677-10693.
|
16 |
BARTHÉLÉMY H, WEBER M, BARBIER F. Hydrogen storage: Recent improvements and industrial perspectives[J]. International Journal of Hydrogen Energy, 2017, (42)11: 7254-7262.
|
17 |
STAYKOV A, YAMABE J, SOMERDAY B P. Effect of hydrogen gas impurities on the hydrogen dissociation on iron surface[J]. International Journal of Quantum Chemistry, 2014, 114(10): 626-635.
|
18 |
MAIR G W, HOFFMANN M. Regulations and research on RC & S for hydrogen storage relevant to transport and vehicle issues with special focus on composite containments[J]. International Journal of Hydrogen Energy, 2014, (39)11: 6132-6145.
|
19 |
陈潇洒. 铝内胆碳纤维全缠绕高压气瓶的轻量化与长寿命技术研究[D]. 南京: 南京航空航天大学, 2017.CHEN X S. Research on lightweight and long-life technology of aluminum alloy liner carbon[D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2017.
|
20 |
开方明. 铝内衬轻质高压储氢容器强度和可靠性研究[D]. 杭州: 浙江大学, 2007.KAI F M. Strength and reliability research on lightweight aluminum-lined high-pressure hydrogen storage tanks[D]. Hangzhou: Zhejiang University, 2007.
|
21 |
COLOM S, WEBER M, BAARBIER F. Storhy: A European development of composite vessels for 70 MPa hydrogen storage[C]//World Hydrogen Energy Conference, 2008.
|
22 |
杨文刚, 李文斌, 林松, 等. 碳纤维缠绕复合材料储氢气瓶的研制与应用进展[J]. 玻璃钢/复合材料, 2015(12): 99-104.YANG W G, LI W B, LIN S, et al. Research and application progress of carbon fiber composite hydrogen storage cylinder[J]. Fiber Reinforced Plastics/Composites, 2015(12): 99-104.
|
23 |
TAKEICHI N, SENOH H, YOKOTA T. "Hybrid hydrogen storage vessel", a novel high-pressure hydrogen storage vessel combined with hydrogen storage material[J]. International Journal of Hydrogen Energy, 2003, 28(10): 1121-1129.
|
24 |
周宏. 碳纤维的十六个主要应用领域及近期技术进展(三)[J]. 产业用纺织品, 2017, 35(5): 1-7.ZHOU H. Sixteen main application areas and recent technical progress for the carbon fiber: Part 3[J]. Technical Textiles, 2017, 35(5): 1-7.
|
25 |
LUXENBURGER B, MÜLLER W. Investigations of the discharging of metal hydride beds for hydrogen-gasoline mixture operation of SI-engines[J]. International Journal of Hydrogen Energy, 1985, 10(5): 305-315.
|
26 |
周超, 王辉, 欧阳柳章, 等. 高压复合储氢罐用储氢材料的研究进展[J]. 材料导报, 2019, 33(1): 117-126.ZHOU C, WANG H, OUYANG L Z, et al. The state of the art of hydrogen storage materials for high-pressure hybrid hydrogen vessel[J]. Materials Review, 2019, 33(1): 117-126.
|
27 |
HOON H L, HYUNG K K, KI H H. Hydrogen storage system for fuel cell vehicle: US20090155648[P]. [2009-06-18].
|
28 |
KOJIMA Y, KAWAI Y, TOWATA S I, et al. Development of metal hydride with high dissociation pressure[J]. Journal of Alloys and Compounds, 2006, 419(1/2): 256-261.
|
29 |
CAO Z J, OUYANG L Z, WANG H, et al. Advanced high-pressure metal hydride fabricated via Ti-Cr-Mn alloys for hybrid tank[J]. International Journal of Hydrogen Energy, 2015, 40(6): 2717-2728.
|
30 |
WELTER T, MULLER R, DEUBENER J, et al. Hydrogen permeation through glass[J]. Frontiers in Materials, 2020, 6: 342.
|
31 |
KOHLI D, KHARDEKR R K, Singh R, et al. Glass micro-container based hydrogen storage scheme[J]. International Journal of Hydrogen Energy, 2008, 33(1): 417-422.
|
32 |
ZHEVAGO N K, GLEBOV V. Hydrogen storage in capillary arrays[J]. Energy Conversion and Management, 2007, 48(5): 1554-1559.
|
33 |
BUDOV V V. Hollow glass microspheres. Use, properties, and technology (review)[J]. Glass and Ceramics, 1994, 51(7/8): 230-235.
|
34 |
TEITEL R J. Microcavity hydrogen storage. Final progress report. Brookhaven National Lab[R]. Upton: NY (USA), 1981.
|
35 |
DAS L M. On-board hydrogen storage system for automotive application[J]. International Journal of Hydrogen Energy, 1996, 21(9): 789-800.
|
36 |
TSUGAWA R T, MOEN I, ROBERTS P E, et al. Permeation of helium and hydrogen from glass-microsphere laser targets[J]. Journal of Applied Physics, 1976, 47(5): 1987.
|
37 |
RAMBACH G. Hydrogen transport and storage in engineered glass microspheres[R]. Lawrence Livermore National Lab., CA(United States), 1994.
|
38 |
邱龙会, 魏芸, 傅依备. 薄壁玻璃微球壳的热扩散充气[J]. 强激光与粒子束, 1999, 11(3): 317-320.QIU L H, WEI Y, FU Y B. Gas diffusion fill through hollow glass microspheres with high aspect ratio[J]. High Power Laser and Particle Beams, 1999, 11(3): 317-320.
|
39 |
RAPP D B, SHELBY J E. Photo-induced hydrogen outgassing of glass[J]. Journal of Non-Crystalline Solids, 2004, 349: 254-259.
|
40 |
张占文, 唐永建, 王朝阳, 等. 空心玻璃微球高压贮氢技术[J]. 化工学报, 2006, 57(7): 1677-1681.
|
|
ZHANG Z W, TANG Y J, WANG C Y, et al. High pressure hydrogen storage in hollow glass microspheres[J]. CIESC Journal, 2006, 57(7): 1677-1681.
|
41 |
SHELBY J E, HALL M M, RASZEWKI F C. A radically new method for hydrogen storage in hollow glass microspheres[R]. USDOE, 2009.
|
42 |
QIN F X, BROSSEAU C. A review and analysis of microwave absorption in polymer composites filled with carbonaceous particles[J]. Journal of Applied Physics, 2012, 111(6): doi: 10.1063/1.3688435.
|
43 |
ZHEVAGO N K, GNEDENKO V, GORYACHEV I, et al. On-board hydrogen accumulator for vehicles[C]//G8 International Forum: Hydrogen Technologies for Energy Production, 2006: 6-10.
|
44 |
ZHEVAGO N K. Other methods for the physical storage of hydrogen[M]//Compendium of Hydrogen Energy. Woodhead Publishing, 2016: 189-218.
|
45 |
MEYER R, HOLTAPPELS K, BECKMANN K M, et al. A new technology for hydrogen safety: Glass structures as a storage system[C]//International Conference on Hydrogen Safety, 2011.
|
46 |
ZHEVAGO N K, CHABAK A F, DENISOV E I, et al. Storage of cryo-compressed hydrogen in flexible glass capillaries[J]. International Journal of Hydrogen Energy, 2013, 38(16): 6694-6703.
|
47 |
HOLTAPPELS K, BECKMANN K M, GEBAUER M. Hydrogen storage in glass capillary arrays for portable and mobile systems[C]//3rd International Conference on Hydrogen Safety, 2009: 242.
|
48 |
GRIFFITH A A. The phenomena of rupture and flow in solids[J]. Philosophical Transactions of the Royal Society of London, Series A, 1921, 221(582/593): 163-198.
|
49 |
GRÖSCHL C. Examination of stress and strain in glass structures during pressure treatment using FEM simulation and experimental tests[D]. Zürich: BMA, 2016.
|
50 |
MEYER-SCHERF R. The pressure resistance of hollow glass fibers at internal pressure load[D]. Magdeburg: Otto-von-Guericke-Universität Magdeburg, 2015.
|