储能科学与技术 ›› 2021, Vol. 10 ›› Issue (6): 2318-2325.doi: 10.19799/j.cnki.2095-4239.2021.0242

• 储能测试与评价 • 上一篇    下一篇

基于加权多新息AEKF的锂电池SOC在线估算

乔家璐(), 王顺利(), 于春梅, 史卫豪, 杨潇   

  1. 西南科技大学信息工程学院,四川 绵阳 621010
  • 收稿日期:2021-06-02 修回日期:2021-06-14 出版日期:2021-11-05 发布日期:2021-11-03
  • 作者简介:乔家璐(1998—),女,硕士研究生,研究方向为新能源测控,E-mail:529755647@qq.com|王顺利,教授,从事新能源测控研究,E-mail:497420789@qq.com
  • 基金资助:
    国家自然科学基金项目(61801407);四川省科技厅重点研发项目(2018GZ0390);四川省教育厅科研项目(17ZB0453);西南科技大学素质类教改(青年发展研究)专项项目

Novel multiple weighted-AEKF method for online state-of-charge estimation of lithium-ion batteries

Jialu QIAO(), Shunli WANG(), Chunmei YU, Weihao SHI, Xiao YANG   

  1. School of Information Engineering, Southwest University of Science and Technology, Mianyang 621010, Sichuan, China
  • Received:2021-06-02 Revised:2021-06-14 Online:2021-11-05 Published:2021-11-03

摘要:

为实现大功率锂离子电池荷电状态的实时准确估算,以三元锂离子电池为研究对象,提出了一种加权多新息理论与自适应扩展卡尔曼滤波相结合的算法。利用多个时刻的残差和卡尔曼增益对估计值进行校正,并根据所包含的信息量为每个残差配置不同的权重。通过对系统噪声协方差和误差协方差的实时更新,自适应地调节和修正当前估计值。为验证算法合理性,采用二阶RC等效电路模型来表征电池动态特性,并在不同工况下进行实验验证。实验结果表明,在DST和BBDST工况下的估算均方根误差分别为1.31%和1.23%,验证了所提出算法具有良好的精度和收敛性。加权多新息自适应扩展卡尔曼滤波算法为锂电池的精确状态估算和广泛应用提供了理论基础。

关键词: 锂离子电池, 二阶RC模型, 荷电状态, 加权多新息, 自适应扩展卡尔曼滤波

Abstract:

To accurately estimate the state-of-charge of high power lithium-ion battery in real-time, the ternary lithium-ion battery is used as the research object and a novel multiple weighted-adaptive extended Kalman filtering method is proposed. The estimation value is corrected multiple times using the residual and Kalman gain, and different weights are configured for each residual based on the amount of information contained. The current estimated value is adjusted and corrected ad-hoc based on the real-time update of system noise covariance and error covariance. To test the algorithm's logic, the second-order RC equivalent circuit model is used to characterize the dynamic characteristics of the battery, and experimental verification is performed under various working conditions. The experimental results show that the estimation root-mean-square-error under HPPC, DST, and BBDST working conditions is 1.31% and 1.23%, respectively, demonstrating the proposed algorithm's good accuracy and convergence. The novel multiple weighted-adaptive extended Kalman filtering method lays the theoretical groundwork for accurate state estimation and widespread application of lithium-ion batteries.

Key words: lithium-ion battery, second-order RC model, state-of-charge, multiple weighted, adaptive extended Kalman filtering

中图分类号: