1 |
熊瑞. 动力电池管理系统核心算法[M]. 北京: 机械工业出版社, 2018.
|
|
XIONG R. Core algorithm of battery management system for EVs[M]. Beijing: China Machine Press, 2018.
|
2 |
赵鹤, 韩策, 程小露, 等. 采用阳极预锂化技术的锂离子电池高倍率老化容量衰减机理研究[J]. 储能科学与技术, 2021, 10(2): 454-461.
|
|
ZHAO H, HAN C, CHENG X L, et al. Study on capacity attenuation mechanism of high-rate aging lithium ion batteries using anode pre-lithization technology[J]. Energy Storage Science and Technology, 2021, 10(2): 454-461.
|
3 |
张金龙, 佟微, 孙叶宁, 等. 锂电池健康状态估算方法综述[J]. 电源学报, 2017, 15(2): 128-134.
|
|
ZHANG J L, TONG W, SUN Y N, et al. Summarize of lithium battery status of health estimation method[J]. Journal of Power Supply, 2017, 15(2): 128-134.
|
4 |
TIAN H X, QIN P L, LI K, et al. A review of the state of health for lithium-ion batteries: Research status and suggestions[J]. Journal of Cleaner Production, 2020, 261: doi: 10.1016/j.jclepro.2020. 120813.
|
5 |
KIPNESS M.1188—1996-IEEE recommended practice for maintenance, testing, and replacement of value-regulated lead-acid(VRLA) batteries for stationary applications[S]. USA: PE/ESSB-Energy Storage & Stationary Battery Committee,1996.
|
6 |
樊亚翔, 肖飞, 许杰, 等. 基于充电电压片段和核岭回归的锂离子电池SOH估计[J/OL].中国电机工程学报, 2021. https://doi.org/10.13334/j.0258-8013.pcsee.201805.
|
|
FAN Y X, XIAO F, XU J, et al. SOH estimation of lithium-ion batteries based on charging voltage fragments and core rig regression[J/OL]. Proceedings of the CSEE, 2021. https://doi.org/10.13334/j.0258-8013.pcsee.201805.
|
7 |
SHU X, LI G, SHEN J W, et al. A uniform estimation framework for state of health of lithium-ion batteries considering feature extraction and parameters optimization[J]. Energy, 2020, 204: doi: 10.1016/j.energy.2020.117957.
|
8 |
任璞, 王顺利, 何明芳, 等. 基于内阻增加和容量衰减双重标定的锂电池健康状态评估[J]. 储能科学与技术, 2021, 10(2): 738-743.
|
|
REN P, WANG S L, HE M F, et al. Health state assessment of lithium battery based on dual calibration of internal resistance increase and capacity decline[J]. Science and Technology of Energy Storage, 2021, 10(2): 738-743.
|
9 |
BI Y L, YIN Y L, CHOE S Y. Online state of health and aging parameter estimation using a physics-based life model with a particle filter[J]. Journal of Power Sources, 2020, 476: doi: 10.1016/j.jpowsour.2020.228655.
|
10 |
李鹏, 李立伟, 杨玉新. 基于IBOA-PF的锂电池健康状态预测[J]. 储能科学与技术, 2021, 10(2): 705-713.
|
|
LI P, LI L W, YANG Y X. Prediction of Li-ion battery health state based on IBOA-PF[J]. Science and Technology of Energy Storage, 2021, 10(2): 705-713.
|
11 |
LI J, WANG D F, DENG L, et al. Aging modes analysis and physical parameter identification based on a simplified electrochemical model for lithium-ion batteries[J]. Journal of Energy Storage, 2020, 31: doi: 10.1016/j.est.2020.101538.
|
12 |
颜湘武, 邓浩然, 郭琪, 等. 基于自适应无迹卡尔曼滤波的动力电池健康状态检测及梯次利用研究[J]. 电工技术学报, 2019, 34(18): 3937-3948.
|
|
YAN X W, DENG H R, GUO Q, et al. Study on the state of health detection of power batteries based on adaptive unscented Kalman filters and the battery echelon utilization[J]. Transactions of China Electrotechnical Society, 2019, 34(18): 3937-3948.
|
13 |
张任, 胥芳, 陈教料, 等. 基于PSO-RBF神经网络的锂离子电池健康状态预测[J]. 中国机械工程, 2016, 27(21): 2975-2981.
|
|
ZHANG R, XU F, CHEN J L, et al. Li-ion battery SOH prediction based on PSO-RBF neural network[J]. China Mechanical Engineering, 2016, 27(21): 2975-2981.
|
14 |
WU Y T, XUE Q, SHEN J W, et al. State of health estimation for lithium-ion batteries based on healthy features and long short-term memory[J]. IEEE Access, 2020, 8: 28533-28547.
|
15 |
刘伟霞, 田勋, 肖家勇, 等. 基于混合模型及LSTM的锂电池SOH与剩余寿命预测[J]. 储能科学与技术, 2021, 10(2): 689-694.
|
|
LIU W X, TIAN X, XIAO J Y, et al. Prediction of SOH and residual life of lithium battery based on hybrid model and LSTM[J]. Energy Storage Science and Technology, 2021, 10(2): 689-694.
|
16 |
陈琳, 王惠民, 李熠婧, 等. 用新陈代谢极限学习机实现电池健康状态估算[J]. 汽车工程, 2021, 43(1): 10-18.
|
|
CHEN L, WANG H M, LI Y J, et al. Battery state-of-health estimation by using metabolic extreme learning machine[J]. Automotive Engineering, 2021, 43(1): 10-18.
|
17 |
JIA J, LIANG J Y, SHI Y H, et al. SOH and RUL prediction of lithium-ion batteries based on Gaussian process regression with indirect health indicators[J]. Energies, 2020, 13(2): doi: 10.3390/en13020375
|
18 |
LIU Q, KANG Y Z, QU S F, et al. An online SOH estimation method based on the fusion of improved ICA and LSTM[C]//2020 IEEE/IAS Industrial and Commercial Power System Asia (I&CPS Asia), Weihai, China. IEEE, 2020: 1163-1167.
|
19 |
ZHANG J C, HOU J, ZHANG Z J. Online state-of-health estimation for the lithium-ion battery based on an LSTM neural network with attention mechanism[C]//2020 Chinese Control And Decision Conference (CCDC), Hefei, China. IEEE, 2020: 1334-1339.
|
20 |
DENG Y W, YING H J, E J, et al. Feature parameter extraction and intelligent estimation of the state-of-health of lithium-ion batteries[J]. Energy, 2019, 176: 91-102.
|
21 |
LIU W, XU Y. Data-driven online health estimation of Li-ion batteries using a novel energy-based health indicator[J]. IEEE Transactions on Energy Conversion, 2020, 35(3): 1715-1718.
|