1 |
付诗意, 吕桃林, 闵凡奇, 等. 电动汽车用锂离子电池SOC估算方法综述[J]. 储能科学与术, 2021, 10(3): 1127-1136.
|
|
FU S Y, LÜ T L, MIN F Q, et al. A review of SOC estimation methods for lithium-ion batteries for electric vehicles[J]. Energy Storage Science and Technology, 2021,10(3): 1127-1136.
|
2 |
李欢, 王顺利, 邹传云, 等. 基于Thevenin模型和自适应卡尔曼的SOC估算研究[J]. 自动化仪表, 2021, 42(1): 46-51.LI H, WANG S L, ZOU C Y, et al. SOC estimation based on Thevenin model and adaptive Kalman filter[J]. Automation Instrumentation, 2021,42(1): 46-51.
|
3 |
殷福嘉. 基于RC等效电路模型的锂电池SOC估计[J]. 软件导刊, 2021, 20(1): 117-122.
|
|
YIN F J. SOC estimation of lithium battery based on RC equivalent circuit model[J]. Software Guide, 2021, 20(1): 117-122.
|
4 |
孙鹏宇, 李建良, 陶知非, 等. 动态工况电池在线参数辨识及SOC估计研究[J]. 电子测量与仪器学报, 2021, 35(1): 10-17.SUN P Y, LI J L, TAO Z F, et al. Research on online parameter identification and SOC estimation of battery under dynamic conditions[J]. Journal of Electronic Measurement and Instrumentation, 2021,35(1): 10-17.
|
5 |
熊然, 王顺利, 于春梅, 等. 基于Thevenin模型和改进扩展卡尔曼的特种机器人锂离子电池SOC估算方法[J]. 储能科学与技术, 2021, 10(2): 695-704.
|
|
XIONG R, WANG S L, YU C M, et al. SOC estimation method of lithium ion battery for special robot based on Thevenin model and improved extended Kalman[J]. Energy Storage Science and Technology, 2021,10(2): 695-704.
|
6 |
胡洁宇, 吴松荣, 陆凡, 等. 基于奇异值分解无迹卡尔曼滤波的锂电池荷电状态估计[J]. 科学技术与工程, 2020, 20(35): 14530-14535.
|
|
HU J Y, WU S R, LU F, et al. State of charge estimation of lithium battery based on singular value decomposition and unscented Kalman filter[J]. Science, Technology and Engineering, 2020, 20(35): 14530-14535.
|
7 |
ZHANG Z Y, JIANG L, ZHANG L Z, et al. State-of-charge estimation of lithium-ion battery pack by using an adaptive extended Kalman filter for electric vehicles[J]. Journal of Energy Storage, 2021,37(2): 1-15.
|
8 |
DEY S, SHI Y, SMITH K, et al. From battery cell to electrodes: Real-time estimation of charge and health of individual battery electrodes[J]. IEEE Transactions on Industrial Electronics, 2020, 67(3): 2167-2175.
|
9 |
韩肄旸. 基于改进的卡尔曼滤波算法的锂电池荷电状态估计[D]. 南京: 南京邮电大学, 2020.HAN Y Y. State of charge estimation of lithium battery based on Improved Kalman filter algorithm[D]. Nanjing: Nanjing University of Posts and Telecommunications, 2020.
|
10 |
宫兵, 凌六一, 何业梁, 等. 基于自适应无迹卡尔曼滤波的锂电池SOC估计[J]. 电源技术, 2020, 44(11): 1594-1599.
|
|
GONG B, LING L Y, HE Y L, et al. SOC estimation of lithium battery based on adaptive unscented Kalman filter[J]. Chinese Journal of Power Sources, 2020, 44(11): 1594-1599.
|
11 |
王文亮, 何锋, 郑永樑, 等. 基于RLS-EKF联合算法的锂电池SOC估算[J]. 电源技术, 2020, 44(10): 1498-1501+1505.
|
|
WANG W L, HE F, ZHENG Y L, et al. SOC estimation of lithium battery based on RLS-EKF joint algorithm[J]. Chinese Journal of Power Sources, 2020,44(10): 1498-1501+1505.
|
12 |
吕清, 党寻诣, 苏勰, 等. 提高车载锂电池SOC估算精度的方法研究[J]. 车辆与动力技术, 2020(3): 24-29.
|
|
LÜ Q, DANG X Y, SU X, et al. Research on the method of improving SOC estimation accuracy of on-board lithium battery[J]. Vehicle and Power Technology, 2020(3): 24-29.
|
13 |
查伟民. 基于扩展卡尔曼滤波算法的二阶电池模型SOC估算[J]. 山东理工大学学报(自然科学版), 2020, 34(6): 41-45.
|
|
ZHA W M. SOC estimation of second order battery model based on extended Kalman filter algorithm[J]. Journal of Shandong University of Sscience and Technology (Natural Science Edition), 2020, 34(6): 41-45.
|
14 |
安诺静. 基于EKF的电动汽车用锂离子电池SOC估计方法研究[D]. 西安: 长安大学, 2020.AN N J. Research on SOC estimation method of lithium ion battery for electric vehicle based on EKF[D]. Xi'an: Chang'an University, 2020.
|
15 |
莫易敏, 骆聪, 熊巍, 等. 基于改进扩展卡尔曼滤波的锂电池SOC估计[J]. 电源技术, 2020, 44(6): 828-831.
|
|
MO Y M, LUO C, XIONG W, et al. Estimation of SOC for lithium-ion battery based on improved extended Kalman filter[J]. Chinese Journal of Power Sources, 2020,44(6): 828-831.
|
16 |
KAWAHARA Y, SAKABE K, NAKAO R, et al. Development of status detection method of lithium-ion rechargeable battery for hybrid electric vehicles[J]. Journal of Power Sources, 2021,481(3): doi: 10.1016/j.jpowsour.2020.228760.
|
17 |
何明芳, 王顺利, 于春梅, 等. 基于改进PNGV建模的锂电池SOC估算研究[J]. 自动化仪表, 2020, 41(6): 46-51.
|
|
HE M F, WANG S L, YU C M, et al. Research on SOC estimation of lithium batteries based on improved PNGV modeling[J]. Process Automation Instrumentation, 2020, 41(6): 46-51.
|
18 |
李叶. 储能电池荷电状态的在线估算研究[D]. 郑州: 郑州大学, 2020.
|
|
LI Y. On line estimation of state of charge of energy storage battery[D]. Zhengzhou: Zhengzhou University, 2020.
|
19 |
郑涛, 张里, 侯杨成, 等. 基于自适应CKF的老化锂电池SOC估计[J]. 储能科学与技术, 2020, 9(4): 1193-1199.
|
|
ZHENG T, ZHANG L, HOU Y C, et al. SOC estimation of aging lithium battery based on adaptive CKF[J]. Energy Storage Science and Technology, 2020, 9(4): 1193-1199.
|
20 |
HUANG Z J, FANG Y S, XU J J. SOC estimation of Li-ion battery based on improved EKF algorithm[J]. International Journal of Automotive Technology, 2021, 22(2): 335-340.
|
21 |
刘成武, 邓青, 郭小斌. 基于改进EKF算法的锂电池SOC估算[J]. 机电技术, 2020(1): 50-53+77.
|
|
LIU C W, DENG Q, GUO X B. SOC estimation of lithium battery based on improved EKF algorithm[J]. Electromechanical Technology, 2020(1): 50-53+77.
|
22 |
蒋聪, 王顺利, 李小霞, 等. 基于改进EKF算法变温度下的动力锂电池SOC估算[J]. 储能科学与技术, 2020, 9(1): 145-151.
|
|
JIANG C, WANG S L, LI X X, et al. Estimation method of SOC for power lithium battery based on improved EKF algorithm adaptive to various temperature[J]. Energy Storage Science and Technology, 2020, 9(1): 145-151.
|
23 |
张远进, 吴华伟, 叶从进. 基于AUKF-BP神经网络的锂电池SOC估算[J]. 储能科学与技术, 2021, 10(1): 237-241.
|
|
ZHANG Y J, WU H W, YE C J. SOC estimation of lithium battery based on AUKF-BP neural network[J]. Energy Storage Science and Technology, 2021,10(1): 237-241.
|