储能科学与技术 ›› 2022, Vol. 11 ›› Issue (1): 107-118.doi: 10.19799/j.cnki.2095-4239.2021.0381
朱信龙1(), 王均毅2, 潘加爽2, 康传智2, 邹燚涛1, 杨凯杰1, 施红2()
收稿日期:
2021-07-26
修回日期:
2021-10-10
出版日期:
2022-01-05
发布日期:
2022-01-10
通讯作者:
施红
E-mail:2496593640@qq.com;shihong@nuaa.edu.cn
作者简介:
朱信龙(1997—),男,硕士研究生,研究方向为人机与环境工程,E-mail:基金资助:
Xinlong ZHU1(), Junyi WANG2, Jiashuang PAN2, Chuanzhi KANG2, Yitao ZOU1, Kaijie YANG1, Hong SHI2()
Received:
2021-07-26
Revised:
2021-10-10
Online:
2022-01-05
Published:
2022-01-10
Contact:
Hong SHI
E-mail:2496593640@qq.com;shihong@nuaa.edu.cn
摘要:
集装箱储能系统因其安装运输方便、建设周期短和环境适应能力强的优点而具有广泛的发展前景。然而随着整体能量密度的不断提高和制造成本的降低,以热失控为特征的储能系统电池安全事故频发,严重威胁着用电安全和相关人员的生命安全。因此,以防止集装箱储能系统热失控为核心的研究成为近几年储能系统研究领域的热点。本文从储能电池安全角度出发,对目前集装箱储能系统热失控机理及研究现状进行综述,阐述了储能电池的冷却方式(空气冷却、液体冷却、相变材料冷却和热管冷却)以及热失控的抑制措施,总结了最新研究成果。具体地阐明了温度和湿度对电池的影响,全面总结了提高集装箱储能系统安全性及可靠性的方法,合理展望了现今储能系统热管理技术的发展方向,以期促进储能系统安全管理方法与策略的开发,进而提高储能电池系统的安全性。
中图分类号:
朱信龙, 王均毅, 潘加爽, 康传智, 邹燚涛, 杨凯杰, 施红. 集装箱储能系统热管理系统的现状及发展[J]. 储能科学与技术, 2022, 11(1): 107-118.
Xinlong ZHU, Junyi WANG, Jiashuang PAN, Chuanzhi KANG, Yitao ZOU, Kaijie YANG, Hong SHI. Present situation and development of thermal management system for battery energy storage system[J]. Energy Storage Science and Technology, 2022, 11(1): 107-118.
1 | 严晓辉, 陈海生. 国际储能产业政策及我国储能产业发展分析[J]. 中国能源, 2011, 33(11): 28-33. |
YAN X H,CHEN H S. International energy storage industry policy and development analysis of China's energy storage industry[J]. Energy of China, 2011, 33(11): 28-33. | |
2 | 周喜超. 电力储能技术发展现状及走向分析[J]. 热力发电, 2020, 49(8): 7-12. |
ZHOU X C. Development status and trend analysis of electric energy storage technology[J]. Thermal Power Generation, 2020, 49(8): 7-12. | |
3 | 储能技术专业学科发展行动计划[J].电力设备管理, 2020(2): 18-19. |
Action plan for Discipline Development of energy storage technology[J]. Power Equipment Management, 2020(2): 18-19. | |
4 | WANG S Q, LU L G, REN D S, et al. Experimental investigation on the feasibility of heat pipe-based thermal management system to prevent thermal runaway propagation[J]. Journal of Electrochemical Energy Conversion and Storage, 2019, 16(3): doi: 10.1115/1.4042555. |
5 | WANG K K, GAO F, ZHU Y L, et al. Internal resistance and heat generation of soft package Li4Ti5O12 battery during charge and discharge[J]. Energy, 2018, 149: 364-374. |
6 | 马勇, 张量, 王亦伟, 等. 储能用LiFePO4锂离子电池的热安全特性[J]. 电池, 2021, 51(1): 41-45. |
MA Y, ZHANG L, WANG Y W, et al. Thermal safety characteristics of LiFePO4 lithium-ion battery for energy storage[J]. Battery, 2021, 51(1): 41-45. | |
7 | ZHAO R, GU J J, LIU J. An experimental study of heat pipe thermal management system with wet cooling method for lithium-ion batteries[J]. Journal of Power Sources, 2015, 273: 1089-1097. |
8 | FENG X N, SUN J, OUYANG M G, et al. Characterization of large format lithium-ion battery exposed to extremely high temperature[J]. Journal of Power Sources, 2014, 272: 457-467. |
9 | LI D J, DANILOV D L, GAO L, et al. Degradation mechanisms of C6/LiFePO4 batteries: experimental analyses of calendar ageing[J]. Electrochimica Acta, 2016, 210: 445-455. |
10 | AMINE K, LIU J, BELHAROUAK I. High-temperature storage and cycling of C-LiFePO4/graphite Li-ion cells[J]. Electrochemistry Communications, 2005, 7(7): 669-673. |
11 | AMINE K, LIU J, KANG S H, et al. Improved lithium manganese oxide spinel/graphite Li-ion cells for high-power applications[J]. Journal of Power Sources, 2004, 129(1): 14-19. |
12 | ZHENG H H, SUN Q N, LIU G, et al. Correlation between dissolution behavior and electrochemical cycling performance for LiNi1/3Co1/3Mn1/3O2-based cells[J]. Journal of Power Sources, 2012, 207: 134-140. |
13 | 赵世玺, 郭双桃, 赵建伟, 等. 锂离子电池低温特性研究进展[J]. 硅酸盐学报, 2016, 44(1): 19-28. |
ZHAO S X, GUO S T, ZHAO J W, et al. Research progress on low temperature characteristics of lithium ion batteries[J]. Journal of Silicate, 2016, 44(1): 19-28. | |
14 | SPOTNITZ R, FRANKLIN J. Abuse behavior of high-power, lithium-ion cells[J]. Journal of Power Sources, 2003, 113(1): 81-100. |
15 | LARCHER D, MACNEIL D, DAHN J. Comparison of the reactivity of various carbon electrode materials with electrolyte at elevated temperature[J]. Journal of the Electrochemical Society, 1999, 146(10): 3596-3602. |
16 | FENG X N, FANG M, HE X M, et al. Thermal runaway features of large format prismatic lithium ion battery using extended volume accelerating rate calorimetry[J]. Journal of Power Sources, 2014, 255: 294-301. |
17 | WARNER J. The handbook of lithium-ion battery pack design[M]. Journal of Rare Earths, 2016, 32(2): 217-222. |
18 | DICKINSON B, SWAN D. EV battery pack life: Pack degradation and solutions[C]//Future Transportation Technology Conference & Exposition, 1995. |
19 | 张培红, 袁威, 魏钟原, 等. 湿热环境下NCM三元锂离子电池热失控分析[J]. 东北大学学报(自然科学版), 2020, 41(6): 881-887. |
ZHANG P H, YUAN W, WEI Z Y, et al. Thermal runaway analysis of NCM lithium-ion battery in humid and hot environment[J]. Journal of Northeastern University (Natural Science), 2020, 41(6): 881-887. | |
20 | 聂磊, 秦杏, 张永跃, 等. 磷酸铁锂吸湿规律及对电池性能的影响[J]. 电池, 2018, 48(3): 179-181. |
NIE L, QIN X, ZHANG Y Y, et al. Hygroscopicity of LiFePO4 and its effects on the performance of battery[J]. Battery Bimonthly, 2018, 48(3): 179-181. | |
21 | BERNARDI D, PAWLIKOWSKI E, NEWMAN J. A general energy balance for battery systems[J]. Journal of the Electrochemical Society, 1985, 132(1): 5-12. |
22 | KAZUO O, TAKAMASA O, MASATO N, et al. Thermal behavior of small lithium-ion battery during rapid charge and discharge cycles[J]. Journal of Power Sources, 2006, 158(1): 535-542. |
23 | THOMAS K E, NEWMAN J. Thermal modeling of porous insertion electrodes[J]. Journal of the Electrochemical Society, 2003, 150(2): doi: 10.1149/1.1531194. |
24 | RAO L, NEWMAN J. Heat-generation rate and general energy balance for insertion battery systems[J]. Journal of the Electrochemical Society, 1997, 144(8): 2697-2704. |
25 | XIE Y, HE X J, HU X S, et al. An improved resistance-based thermal model for a pouch lithium-ion battery considering heat generation of posts[J]. Applied Thermal Engineering, 2020, 164(1): doi: 10.1016/j.applthermaleng.2020.115794. |
26 | MEYERS J P, DOYLE M, DARLING R M, et al. The impedance response of a porous electrode composed of intercalation particles[J]. Journal of the Electrochemical Society, 1999, 147(8): 2930-2940. |
27 | XIE Y, LI W, YANG Y, et al. A novel resistance-based thermal model for lithium-ion batteries[J]. International Journal of Energy Research, 2018, 42(14): 4481-4498. |
28 | WANG C, ZHANG G Q, MENG L K, et al. Liquid cooling based on thermal silica plate for battery thermal management system[J]. International Journal of Energy Research, 2017, 41(15): 2468-2479. |
29 | GIULIANO M R, PRASAD A K, ADVANI S G. Experimental study of an air-cooled thermal management system for high-capacity lithium-titanate batteries[J]. Journal of Power Sources, 2012, 216: 345-352. |
30 | HE F, LI X S, MA L. Combined experimental and numerical study of thermal management of battery module consisting of multiple Li-ion cells[J]. International Journal of Heat and Mass Transfer, 2014, 72: 622-629. |
31 | LIN X F, PEREZ H E, MOHAN S, et al. A lumped-parameter electro-thermal model for cylindrical batteries[J]. Journal of Power Sources, 2014, 257: 1-11. |
32 | XU M, ZHANG Z Q, WANG X, et al. A pseudo three-dimensional electrochemical-thermal model of a prismatic LiFePO4 battery during discharge process[J]. Energy, 2015, 80: 303-317. |
33 | LI J, CHENG Y, JIA M, et al. An electrochemical-thermal model based on dynamic responses forlithium iron phosphate battery[J]. Journal of Power Sources, 2014, 255(6): 130-143. |
34 | PANCHAL S, MATHEW M, FRASER R, et al. Electrochemical thermal modeling and experimental measurements of 18650 cylindrical lithium-ion battery during discharge cycle for an EV[J]. Applied Thermal Engineering, 2018, 135: 123-132. |
35 | HU X, TANG X. Review of modeling techniques for lithium-ion traction batteries in electric vehicles[J]. Journal of Mechanical Engineering, 2017, 53(16): 20-31. |
36 | NEUBAUER J, PESARAN A, D COLEMAN, et al. Analyzing the effects of climate and thermal configuration on community energy storage systems (presentation)[C]//California, October 20-23, 2013. |
37 | National Renewable Energy Lab. Battery lifetime analysis and simulation tool (BLAST) documentation: Report of NREL scientific Group[R]. Neubauer : NREL, 2014. |
38 | GATTA F M, GERI A, MACCIONI M, et al. Arc-flash in large battery energy storage systems—Hazard calculation and mitigation[C]//2016 IEEE 16th International Conference on Environment and Electrical Engineering (EEEIC). IEEE, 2016. |
39 | WANG H T, TAO T, XU J, et al. Cooling capacity of a novel modular liquid-cooled battery thermal management system for cylindrical lithium-ion batteries[J]. Applied Thermal Engineering, 2020, 178: doi: 10.1016/j.applthermaleng.2020.115591. |
40 | LAI Y X, WU W X, CHEN K, et al. A compact and lightweight liquid-cooled thermal management solution for cylindrical lithium-ion power battery pack[J]. International Journal of Heat and Mass Transfer, 2019, 144: doi: 10.1016/j.ijheatmasstransfer.2019.118581. |
41 | VERMA A, SHASHIDHARA S, RAKSHIT D. A comparative study on battery thermal management using phase change material (PCM)[J]. Thermal Science and Engineering Progress, 2019, 11: 74-83. |
42 | PING P, PENG R Q, KONG D P, et al. Investigation on thermal management performance of PCM-fin structure for Li-ion battery module in high-temperature environment[J]. Energy Conversion and Management, 2018, 176: 131-146. |
43 | BURBAN G, AYEL V, ALEXANDRE A, et al. Experimental investigation of a pulsating heat pipe for hybrid vehicle applications[J]. Applied Thermal Engineering, 2013, 50(1): 94-103. |
44 | RAO Z H, WANG S F, WU M C, et al. Experimental investigation on thermal management of electric vehicle battery with heat pipe[J]. Energy Conversion & Management, 2013, 65: 92-97. |
45 | TRAN T H, HARMAND S, DESMET B, et al. Experimental investigation on the feasibility of heat pipe cooling for HEV/EV lithium-ion battery[J]. Applied Thermal Engineering, 2014, 63(2): 551-558. |
46 | 张子峰, 王林, 陈东红, 等. 集装箱储能系统散热及抗震性研究[J]. 储能科学与技术, 2013, 2(6): 642-648. |
ZHANG Z F, WANG L, CHEN D H, et al. Cooling and aseismicity study of the containerized energy storage systems[J]. Energy Storage Science and Technology, 2013, 2(6): 642-648. | |
47 | 汤云峰. 一种储电集装箱散热系统: CN205454348U[P]. 2016-08-10. |
TANG Y F. A heat dissipation system for electric storage container: CN205454348U[P]. 2016-08-10. | |
48 | 李淼林, 臧孟炎, 李长玉, 等. 锂离子电池组风冷散热结构的优化[J]. 电池, 2020, 50(3): 266-270. |
LI M L, ZANG M Y, LI C Y, et al. Optimization of structure of air cooling heat dissipation for Li-ion batteries[J]. Battery Bimonthly, 2020, 50(3): 266-270. | |
49 | 王天波, 陈茜, 张兰春, 等. 电动汽车锂离子电池风冷散热结构优化设计[J]. 电源技术, 2020, 44(3): 371-376. |
WANG T B, CHEN Q, ZHANG L C, et al. Optimization design of air cooling heat dissipation structure for electric vehicle lithium ion battery[J]. Chinese Journal of Power Sources, 2020, 44(3): 371-376. | |
50 | SUN H G, DIXON R. Development of cooling strategy for an air cooled lithium-ion battery pack[J]. Journal of Power Sources, 2014, 272: 404-414. |
51 | YUAN H, WANG L F, WANG L Y. Battery thermal management system with liquid cooling and heating in electric vehicles[J]. Automotive Safety and Energy, 2012, 3(4): 371-380. |
52 | 梁昌杰, 陈方元, 秦大同. 混合动力汽车热管理系统流场和温度场CFD分析[C]// 2010年重庆市机械工程学会学术年会, 重庆, 2010.LIANG C J, CHEN Y F, QIN D T. CFD analysis of flow field and temperature field of hybrid electric vehicle thermal management system[C]//2010 Annual Academic Meeting of Chongqing society of Mechanical Engineering. ChongQing, 2010. |
53 | FAN L W, KHODADADI J M, PESARAN A A. A parametric study on thermal management of an air-cooled lithium-ion battery module for plug-in hybrid electric vehicles[J]. Journal of Power Sources, 2013, 238: 301-312. |
54 | 杨凯杰, 裴后举, 朱信龙, 等. 某型集装箱储能电池模块的热设计研究及优化[J]. 储能科学与技术, 2020, 9(6): 1858-1863. |
YANG K J, PEI H J, ZHU X L, et al. Research and optimization of thermal design of a container energy storage battery pack[J]. Energy Storage Science and Technology, 2020, 9(6): 1858-1863. | |
55 | 邹燚涛, 裴后举, 施红, 等. 某型集装箱储能电池组冷却风道设计及优化[J]. 储能科学与技术, 2020, 9(6): 1864-1871. |
ZOU Y T, PEI H J, SHI H, et al. Design and optimization of the cooling duct system for the battery pack of a certain container energy storage[J]. Energy Storage Science and Technology, 2020, 9(6): 1864-1871. | |
56 | LU Z, YU X L, WEI L C, et al. Parametric study of forced air cooling strategy for lithium-ion battery pack with staggered arrangement[J]. Applied Thermal Engineering, 2018, 136: 28-40. |
57 | LIU Y Z, ZHANG J. Design a J-type air-based battery thermal management system through surrogate-based optimization[J]. Applied Energy, 2019, 252: doi: 10.1016/j.apenergy.2019.113426. |
58 | OUYANG D, CHEN M, HUANG Q, et al. A review on the thermal hazards of the lithium-ion battery and the corresponding countermeasure[J]. Applide Sciences, 2019, 9(12): doi: 10.3390/app9122483. |
59 | LARSSON F, ANDERSSON P, BLOMQVIST P, et al. Characteristics of lithium-ion batteries during fire tests[J]. Journal of Power Sources. 2014, 271: 414-420. |
60 | LARSSON F, ANDERSSON P, BLOMQVIST P, et al. Author Correction: Toxic fluoride gas emissions from lithium-ion battery fires[J]. Scientific Reports, 2018, 8(1): doi: 10.1038/s41598-018-22957-8. |
61 | 张青松, 白伟, 程相静, 等. 哈龙替代灭火剂抑制空运锂离子电池试验研究[J]. 消防科学与技术, 2017, 36(9): 1262-1265. |
ZHANG Q S, BAI W, CHENG X J, et al. Inhibition of thermal runaway by Halon replacement fire extinguishing agent on airborne lithium-ion battery[j]. Fire science and Technology, 36(9): 1262-1265. | |
62 | RISE Research Institutes of Sweden. Lion fire: Extinguishment and mitigation of fires in Li-ion batteries at sea[R]. Andersson: RISE, 2018. |
63 | 李毅, 于东兴, 张少禹, 等. 典型锂离子电池火灾灭火试验研究[J]. 安全与环境学报, 2015, 15(6): 120-125. |
LI Y, YU D X, ZHANG S Y, et al. On the fire extinguishing tests of typical Lithium-ion battery[J]. Journal of Safety and Environment, 2015, 15(6): 120-125. | |
64 | 刘昱君, 段强领, 黎可, 等. 多种灭火剂扑救大容量锂离子电池火灾的实验研究[J]. 储能科学与技术, 2018, 7(6): 1105-1112. |
LIU Y J, DUAN Q L, LI K, et al. Experimental study on fire extinguishing of large-capacity lithium-ion batteries by various fire extinguishing agents[J]. Energy Storage Science and Technology, 2018, 7(6): 1105-1112. | |
65 | WANG Q S, LI K, WANG Y, et al. The efficiency of dodecafluoro-2-methylpentan-3-one on suppressing the lithium-ion battery fire[J]. Journal of Electrochemical Energy Conversion and Storage, 2018, 15(4): doi: 10.1115/1.4039418. |
66 | Federal Aviation Administration. Flammability assessment of bulk-packed, rechargeable lithium-ion cells in transport category aircraft[R]. Webster : FAA, 2007. |
67 | Federal Aviation Administration. Flammability assessment of lithium-ion and lithium-ion polymer battery cells designed for aircraft power usage[R]. Summer : FAA, 2010. |
68 | LIU Y J, DUAN Q L, XU J J, et al. Experimental study on the efficiency of dodecafluoro-2-methylpentan-3-one on suppressing lithium-ion battery fires[J]. RSC Advances, 2018, 8(73): 42223-42232. |
[1] | 李海涛, 孔令丽, 张欣, 余传军, 王纪威, 徐琳. N/P设计对高镍NCM/Gr电芯性能的影响[J]. 储能科学与技术, 2022, 11(7): 2040-2045. |
[2] | 姚祯, 张琦, 王锐, 刘庆华, 王保国, 缪平. 生物质衍生碳材料在全钒液流电池电极方面的应用[J]. 储能科学与技术, 2022, 11(7): 2083-2091. |
[3] | 时雨, 张忠, 杨晶莹, 钱薇, 李昊, 赵祥, 杨欣桐. 储能电池系统提供AGC调频的机会成本建模与市场策略[J]. 储能科学与技术, 2022, 11(7): 2366-2373. |
[4] | 元佳宇, 李昕光, 王文超, 付程阔. 考虑质量流量的电池组蛇形冷却结构仿真[J]. 储能科学与技术, 2022, 11(7): 2274-2281. |
[5] | 刘长洋, 卞刘振, 郜建全, 彭继华, 彭军, 安胜利. 固体氧化物燃料电池La0.7Sr0.3Fe0.9Ni0.1O3-δ 对称电极的电化学性能[J]. 储能科学与技术, 2022, 11(7): 2059-2065. |
[6] | 陈龙, 夏权, 任羿, 曹高萍, 邱景义, 张浩. 多物理场耦合下锂离子电池组可靠性研究现状与展望[J]. 储能科学与技术, 2022, 11(7): 2316-2323. |
[7] | 刘显茜, 孙安梁, 田川. 基于仿生翅脉流道冷板的锂离子电池组液冷散热[J]. 储能科学与技术, 2022, 11(7): 2266-2273. |
[8] | 鲁志颖, 江杉, 李全龙, 马可心, 傅腾, 郑志刚, 刘志成, 李淼, 梁永胜, 董知非. 全钒液流电池在充电结束搁置阶段的开路电压变化[J]. 储能科学与技术, 2022, 11(7): 2046-2050. |
[9] | 黄鹏, 聂枝根, 陈峥, 舒星, 沈世全, 杨继鹏, 申江卫. 基于优化Elman神经网络的锂电池容量预测[J]. 储能科学与技术, 2022, 11(7): 2282-2294. |
[10] | 易顺民, 谢林柏, 彭力. 基于VF-DW-DFN的锂离子电池剩余寿命预测[J]. 储能科学与技术, 2022, 11(7): 2305-2315. |
[11] | 张肖洒, 王宏源, 李振彪, 夏志美. 废旧磷酸铁锂电池电极材料的硫酸化焙烧-水浸新工艺[J]. 储能科学与技术, 2022, 11(7): 2066-2074. |
[12] | 祝庆伟, 俞小莉, 吴启超, 徐一丹, 陈芬放, 黄瑞. 高能量密度锂离子电池老化半经验模型[J]. 储能科学与技术, 2022, 11(7): 2324-2331. |
[13] | 徐雄文, 聂阳, 涂健, 许峥, 谢健, 赵新兵. 普鲁士蓝正极软包钠离子电池的滥用性能[J]. 储能科学与技术, 2022, 11(7): 2030-2039. |
[14] | 王宇作, 王瑨, 卢颖莉, 阮殿波. 孔结构对软碳负极储锂性能的影响[J]. 储能科学与技术, 2022, 11(7): 2023-2029. |
[15] | 郭雨涵, 郁丹, 杨鹏, 王子绩, 王金涛. 基于贪婪算法的分布式储能系统容量优化配置方法[J]. 储能科学与技术, 2022, 11(7): 2295-2304. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||