1 |
金标, 姜斌, 刘方方, 等. 车用动力锂电池产热特性分析与优化[J]. 储能科学与技术, 2018, 7(1): 128-134.
|
|
JIN B, JIANG B, LIU F F, et al. Thermal characteristic analysis and optimization for vehicle power lithium battery[J]. Energy Storage Science and Technology, 2018, 7(1): 128-134.
|
2 |
周天念, 吴传平, 陈宝辉. 加热引发三元18650型锂离子电池组的燃烧特性[J]. 储能科学与技术, 2021, 10(2): 558-564.
|
|
ZHOU T N, WU C P, CHEN B H. Burning characteristics of the 18650-type lithium-ion ternary battery pack induced by heating[J]. Energy Storage Science and Technology, 2021, 10(2): 558-564.
|
3 |
雷治国, 张承宁, 李军求. 电动车辆用锂离子电池热特性研究[J]. 电源学报, 2014, 12(4): 83-87, 92.
|
|
LEI Z G, ZHANG C N, LI J Q. Research on thermal characteristics of EVs lithium-ion battery[J]. Journal of Power Supply, 2014, 12(4): 83-87, 92.
|
4 |
杨东辉, 吴贤章, 王羽平, 等. 锂离子电池电化学仿真技术综述[J]. 储能科学与技术, 2021, 10(3): 1060-1070.
|
|
YANG D H, WU X Z, WANG Y P, et al. Review of lithium-ion battery electrochemical simulation technology[J]. Energy Storage Science and Technology, 2021, 10(3): 1060-1070.
|
5 |
胡广, 廖承林, 张文杰. 车用锂离子电池热失控研究综述[J]. 电工电能新技术, 2021, 40(2): 66-80.
|
|
HU G, LIAO C L, ZHANG W J. A review on thermal runaway of lithium-ion batteries for electric vehicle[J]. Advanced Technology of Electrical Engineering and Energy, 2021, 40(2): 66-80.
|
6 |
BERNARDI D, PAWLIKOWSKI E, NEWMAN J. A general energy balance for battery systems[J]. Journal of the Electrochemical Society, 1985, 132(1): 5-12.
|
7 |
CHEN S C, WAN C C, WANG Y Y. Thermal analysis of lithium-ion batteries[J]. Journal of Power Sources, 2005, 140(1): 111-124.
|
8 |
HALLAJ S, MALEKI H, HONG J S, et al. Thermal modeling and design considerations of lithium-ion batteries[J]. Journal of Power Sources, 1999, 83(1/2): 1-8.
|
9 |
LIU S H, LIU X L, DOU R F, et al. Experimental and simulation study on thermal characteristics of 18650 lithium-iron-phosphate battery with and without spot-welding tabs[J]. Applied Thermal Engineering, 2020, 166: doi: 10.1016/j.applthermaleng.2019.114648.
|
10 |
CHACKO S, CHUNG Y M. Thermal modelling of Li-ion polymer battery for electric vehicle drive cycles[J]. Journal of Power Sources, 2012, 213: 296-303.
|
11 |
JAGUEMONT J, OMAR N, ABDEL-MONEM M, et al. Fast-charging investigation on high-power and high-energy density pouch cells with 3D-thermal model development[J]. Applied Thermal Engineering, 2018, 128: 1282-1296.
|
12 |
BERCKMANS G, RONSMANS J, JAGUEMONT J, et al. Lithium-ion capacitor: Analysis of thermal behavior and development of three-dimensional thermal model[J]. Journal of Electrochemical Energy Conversion and Storage, 2017, 14(4): doi: 10.1115/1.4037491.
|
13 |
ZHAO R, LIU J, GU J J. The effects of electrode thickness on the electrochemical and thermal characteristics of lithium ion battery[J]. Applied Energy, 2015, 139: 220-229.
|
14 |
JEON D H, BAEK S M. Thermal modeling of cylindrical lithium ion battery during discharge cycle[J]. Energy Conversion and Management, 2011, 52(8/9): 2973-2981.
|
15 |
RAO Z H, HUO Y T, LIU X J. Experimental study of an OHP-cooled thermal management system for electric vehicle power battery[J]. Experimental Thermal and Fluid Science, 2014, 57: 20-26.
|
16 |
DAMAY N, FORGEZ C, BICHAT M P, et al. A method for the fast estimation of a battery entropy-variation high-resolution curve—Application on a commercial LiFePO4/graphite cell[J]. Journal of Power Sources, 2016, 332: 149-153.
|
17 |
丁亚军, 徐晶, 丁凡, 等. 圆柱锂电池表面自然对流换热系数仿真估算[J]. 电源技术, 2020, 44(9): 1256-1259.
|
|
DING Y J, XU J, DING F, et al. Simulation and estimation of natural convection heat transfer coefficient on surface of cylindrical lithium ion batteries[J]. Chinese Journal of Power Sources, 2020, 44(9): 1256-1259.
|
18 |
吴学红, 马西锋, 王于曹, 等. 环境温度与对流换热系数对电池散热性能的影响研究[J]. 低温与超导, 2019, 47(6): 67-72.
|
|
WU X H, MA X F, WANG Y C, et al. The effect of ambient temperature and convection heat transfer coefficient on the heat dissipation performance of the battery[J]. Cryogenics & Superconductivity, 2019, 47(6): 67-72.
|