储能科学与技术 ›› 2022, Vol. 11 ›› Issue (1): 297-312.doi: 10.19799/j.cnki.2095-4239.2021.0671
田孟羽(), 朱璟, 岑官骏, 乔荣涵, 申晓宇, 季洪祥, 田丰, 金周, 闫勇, 武怿达, 詹元杰, 俞海龙, 贲留斌, 刘燕燕, 黄学杰()
收稿日期:
2021-12-15
修回日期:
2021-12-17
出版日期:
2022-01-05
发布日期:
2022-01-10
通讯作者:
黄学杰
E-mail:tianmengyu18@mails.ucas.edu.cn;xjhuang@iphy.ac.cn
作者简介:
田孟羽(1996—),男,硕士研究生,研究方向为锂离子电池负极材料,E-mail:基金资助:
Mengyu TIAN(), Jing ZHU, Guanjun CEN, Ronghan QIAO, Xiaoyu SHEN, Hongxiang JI, Feng TIAN, Zhou JIN, Yong YAN, Yida WU, Yuanjie ZHAN, Hailong YU, Liubin BEN, Yanyan LIU, Xuejie HUANG()
Received:
2021-12-15
Revised:
2021-12-17
Online:
2022-01-05
Published:
2022-01-10
Contact:
Xuejie HUANG
E-mail:tianmengyu18@mails.ucas.edu.cn;xjhuang@iphy.ac.cn
摘要:
该文是一篇近两个月的锂电池文献评述,以“lithium”和“batter*”为关键词检索了Web of Science从2021年10月1日至2021年11月30日上线的锂电池研究论文,共有3614篇,选择其中100篇加以评论。正极材料的研究主要集中在对高镍三元、高电压钴酸锂和富锂锰基的表面改性和体相掺杂,以及其在长循环过程中或高电压下所发生的表面和体相的结构演变。金属锂负极的研究侧重于表面修饰,改变锂沉积方向。固态电解质的研究主要包括对硫化物固态电解质、氧化物固态电解质、聚合物固态电解质以及复合固态电解质的结构设计以及相关性能研究。电解液和添加剂的研究主要侧重于不同电解质和溶剂对各类电池材料体系适配,以及对新的功能性添加剂的探索。固态电池方向更多地集中于界面问题的研究。锂硫电池的研究重点是提高硫正极的活性,改善“穿梭”效应。测试表征方面偏重于对材料体相结构和电极/电解质界面等进行观测和分析,固态电池的界面问题研究是热点。理论计算对材料的表面氧活性、界面结构及锂离子的运输机制进行了探讨,而界面反应涉及到了SEI形成的分析。此外,集流体的改性以及电极预锂化研究工作也有多篇。
中图分类号:
田孟羽, 朱璟, 岑官骏, 乔荣涵, 申晓宇, 季洪祥, 田丰, 金周, 闫勇, 武怿达, 詹元杰, 俞海龙, 贲留斌, 刘燕燕, 黄学杰. 锂电池百篇论文点评(2021.10.1—2021.11.30)[J]. 储能科学与技术, 2022, 11(1): 297-312.
Mengyu TIAN, Jing ZHU, Guanjun CEN, Ronghan QIAO, Xiaoyu SHEN, Hongxiang JI, Feng TIAN, Zhou JIN, Yong YAN, Yida WU, Yuanjie ZHAN, Hailong YU, Liubin BEN, Yanyan LIU, Xuejie HUANG. Reviews of selected 100 recent papers for lithium batteries(Oct. 1, 2021 to Nov. 30, 2021)[J]. Energy Storage Science and Technology, 2022, 11(1): 297-312.
1 | YANG J C, CHEN Y X, LI Y J, et al. Encouraging voltage stability upon long cycling of Li-rich Mn-based cathode materials by Ta-Mo dual doping[J]. ACS Applied Materials & Interfaces, 2021, 13(22): 25981-25992. |
2 | WEI H X, YING D H, TANG L B, et al. Lithium-rich manganese-based cathode materials with highly stable lattice and surface enabled by perovskite-type phase-compatible layer[J]. Nano Energy, 2021, 88: doi: 10.1016/j.nanoen.2021.106288. |
3 | ZHU C Q, CAO M Y, ZHANG H Y, et al. Synergistic effect of microstructure engineering and local crystal structure tuning to improve the cycling stability of Ni-rich cathodes[J]. ACS Applied Materials & Interfaces, 2021, 13(41): 48720-48729. |
4 | JI H X, BEN L B, YU H L, et al. Electrolyzed Ni(OH)2 precursor sintered with LiOH/LiNiO3 mixed salt for structurally and electrochemically stable cobalt-free LiNiO2 cathode materials[J]. ACS Applied Materials & Interfaces, 2021, 13(43): 50965-50974. |
5 | CHIEN P H, WU X Y, SONG B H, et al. New insights into structural evolution of LiNiO2 revealed by operando neutron diffraction[J]. Batteries & Supercaps, 2021, 4(11): 1701-1707. |
6 | HYUN H, JEONG K, HONG H, et al. Suppressing high-current-induced phase separation in Ni-rich layered oxides by electrochemically manipulating dynamic lithium distribution[J]. Advanced Materials, 2021: doi: 10.1002/adma.202105337. |
7 | LUU N S, LIM J M, TORRES-CASTANEDO C G, et al. Elucidating and mitigating high-voltage interfacial chemomechanical degradation of nickel-rich lithium-ion battery cathodes via conformal graphene coating[J]. ACS Applied Energy Materials, 2021, 4(10): 11069-11079. |
8 | WATANABE T, YOKOKAWA T, YAMADA M, et al. Surface coating of a LiNixCoyAl1–x–yO2 (x>0.85) cathode with Li3PO4 for applying a water-based hybrid polymer binder during Li-ion battery preparation[J]. RSC Advances, 2021, 11(59): 37150-37161. |
9 | FAN X M, HUANG Y D, WEI H X, et al. Surface modification engineering enabling 4.6 V single-crystalline Ni-rich cathode with superior long-term cyclability[J]. Advanced Functional Materials, 2021, doi: 10.1002/adfm.202109421. |
10 | HERZOG M J, GAUQUELIN N, ESKEN D, et al. Increased performance improvement of lithium-ion batteries by dry powder coating of high-nickel NMC with nanostructured fumed ternary lithium metal oxides[J]. ACS Applied Energy Materials, 2021, 4(9): 8832-8848. |
11 | ARIYOSHI K, KAJIKAWA K, YAMADA Y. Synthesis and electrochemical properties of a cubic polymorph of LiNi1/2Mn1/2O2 with a spinel framework[J]. Journal of Solid State Electrochemistry, 2021: 1-11. |
12 | WU J, WANG X, LIU Q, et al. A synergistic exploitation to produce high-voltage quasi-solid-state lithium metal batteries[J]. Nature Communications, 2021, 12(1): doi: 10.1038/s41467-021-26073-6. |
13 | CHEN D, ZHANG J, JIANG Z, et al. Role of Fluorine in chemomechanics of cation-disordered rocksalt cathodes[J]. Chemistry of Materials, 2021, 33(17): 7028-7038. |
14 | LIANG G, PETERSON V K, WU Z, et al. Crystallographic-site-specific structural engineering enables extraordinary electrochemical performance of high-voltage LiNi0.5Mn1.5O4 spinel cathodes for lithium-ion batteries[J]. Advanced Materials, 2021, 33(44): doi: 10.1002/adma.202101413. |
15 | KOBAYASHI H, YUAN G, GAMBE Y, et al. Effective Li3AlF6 surface coating for high-voltage lithium-ion battery operation[J]. ACS Applied Energy Materials, 2021, 4(9): 9866-9870. |
16 | YAMAMOTO K, YOSHINARI T, KUWABARA A, et al. Accelerated lithium ions diffusion at the interface between LiFePO4 electrode and electrolyte by surface-nitride treatment[J]. Solid State Ionics, 2021, 373: doi: 10.1016/j.ssi.2021.115792. |
17 | CASINO S, BEUSE T, KÜPERS V, et al. Quantification of aging mechanisms of carbon-coated and uncoated silicon thin film anodes in lithium metal and lithium ion cells[J]. Journal of Energy Storage, 2021, 41: doi: 10.1016/j.est.2021.102812. |
18 | DUFFICY M K, CORDER R D, DENNIS K A, et al. Guar gel binders for silicon nanoparticle anodes: Relating binder rheology to electrode performance[J]. ACS Applied Materials & Interfaces, 2021, doi: 10.1021/acsami.1c10776. |
19 | EZZEDINE M, ZAMFIR M R, JARDALI F, et al. Insight into the formation and stability of solid electrolyte interphase for nanostructured silicon-based anode electrodes used in Li-ion batteries[J]. ACS Applied Materials & Interfaces, 2021, 13(21): 24734-24746. |
20 | FANG C, LIU J, ZHANG X, et al. In situ formed weave cage-like nanostructure wrapped mesoporous micron silicon anode for enhanced stable lithium-ion battery[J]. ACS Applied Materials & Interfaces, 2021, 13(25): 29726-29736. |
21 | GAO X, LU W, XU J. Insights into the Li diffusion mechanism in Si/C composite anodes for lithium-ion batteries[J]. ACS Applied Materials & Interfaces, 2021, 13(18): 21362-21370. |
22 | HU L, ZHANG X, ZHAO P, et al. Gradient H-bonding binder enables stable high-areal-capacity Si-based anodes in pouch cells[J]. Advanced Materials, 2021: doi: 10.1002/adma.202104416. |
23 | LIU Y Y, SUN M H, YUAN Y F, et al. Accommodation of silicon in an interconnected copper network for robust Li-ion storage[J]. Advanced Functional Materials, 2020, 30(14): doi: 10.1002/adfm.201910249. |
24 | RONNEBURG A, SILVI L, COOPER J, et al. Solid electrolyte interphase layer formation during lithiation of single-crystal silicon electrodes with a protective aluminum oxide coating[J]. ACS Applied Materials & Interfaces, 2021, 13(18): 21241-21249. |
25 | XIE Z H, RONG M Z, ZHANG M Q. Dynamically cross-linked polymeric binder-made durable silicon anode of a wide operating temperature Li-ion battery[J]. ACS Applied Materials & Interfaces, 2021, 13(24): 28737-28748. |
26 | ADAMS J N, NELSON G J. Cycling-induced microstructural changes in alloy anodes for lithium-ion batteries[J]. Journal of Electrochemical Energy Conversion and Storage, 2021, 18(4): doi: 10.1115/1.4051550. |
27 | CHEN S R, TAO R M, TU J, et al. High performance flexible lithium-ion battery electrodes: Ion exchange assisted fabrication of carbon coated nickel oxide nanosheet arrays on carbon cloth[J]. Advanced Functional Materials, 2021, 31(24): doi: 10.1002/adfm. 202101199. |
28 | JIANG F, WANG Y, QIU T, et al. Superlithiation performance of covalent triazine frameworks as anodes in lithium-ion batteries[J]. ACS Applied Materials & Interfaces, 2021, 13(41): 48818-48827. |
29 | XU N, LI L L, HE Y, et al. Understanding the molecular mechanism of lithium deposition for practical high-energy lithium-metal batteries[J]. Journal of Materials Chemistry A, 2020, 8(13): 6229-6237. |
30 | YANG T T, LI H, TANG Y F, et al. In situ observation of cracking and self-healing of solid electrolyte interphases during lithium deposition[J]. Science Bulletin, 2021, 66(17): 1754-1763. |
31 | GAO R M, YANG H, WANG C Y, et al. Fatigue-resistant interfacial layer for safe lithium metal batteries[J]. Angewandte Chemie, 2021, 60(48): 25508-25513. |
32 | LI X, CONG L, MA S, et al. Low resistance and high stable solid-liquid electrolyte interphases enable high-voltage solid-state lithium metal batteries[J]. Advanced Functional Materials, 2021, 31(20): doi: 10.1002/adfm.202010611. |
33 | LI L B, SHAN Y H, WANG F R, et al. Improving fast and safe transfer of lithium ions in solid-state lithium batteries by porosity and channel structure of polymer electrolyte[J]. ACS Applied Materials & Interfaces, 2021, 13(41): 48525-48535. |
34 | LIU X, GARCIA-MENDEZ R, LUPINI A R, et al. Local electronic structure variation resulting in Li 'filament' formation within solid electrolytes[J]. Nature Materials, 2021, 20(11): 1485-1490. |
35 | QIN Z W, MENG X C, XIE Y M, et al. Fast Li-ion transport pathways via 3D continuous networks in homogeneous garnet-type electrolyte for solid-state lithium batteries[J]. Energy Storage Materials, 2021, 43: 190-201. |
36 | SHI X, ZENG Z, SUN M, et al. Fast Li-ion conductor of Li3HoBr6 for stable all-solid-state lithium-sulfur battery[J]. Nano Letters, 2021, doi: 10.1021/acs.nanolett.1c03573. |
37 | SHIN D M, BACHMAN J E, TAYLOR M K, et al. A single-ion conducting borate network polymer as a viable quasi-solid electrolyte for lithium metal batteries[J]. Advanced Materials, 2020, 32(10): doi: 10.1002/adma.201905771. |
38 | LIN Y, WU M, SUN J, et al. A high-capacity, long-cycling all-solid-state lithium battery enabled by integrated cathode/ultrathin solid electrolyte[J]. Advanced Energy Materials, 2021, 11(35): doi: 10.1002/aenm.202101612. |
39 | LIU Y, PENG H, SU H, et al. Ultrafast synthesis of I-rich lithium argyrodite glass-ceramic electrolyte with high ionic conductivity[J]. Advanced Materials, 2021: doi: 10.1002/adma.202107346. |
40 | WANG B Y, WANG G X, HE P G, et al. Rational design of ultrathin composite solid-state electrolyte for high-performance lithium metal batteries[J]. Journal of Membrane Science, 2022, 642: doi: 10.1016/j.memsci.2021.119952. |
41 | HUANG W L, BI Z J, ZHAO N, et al. Chemical interface engineering of solid garnet batteries for long-life and high-rate performance[J]. Chemical Engineering Journal, 2021, 424: doi: 10.1016/j.cej.2021.130423. |
42 | LEE C, HAN S Y, LEWIS J A, et al. Stack pressure measurements to probe the evolution of the lithium-solid-state electrolyte interface[J]. ACS Energy Letters, 2021, 6(9): 3261-3269. |
43 | JI X, LI S, CAO M, et al. Crosslinked polymer-brush electrolytes: An approach to safe all-solid-state lithium metal batteries at room temperature[J]. Batteries & Supercaps, 2021, doi: 10.1002/batt. 202100319. |
44 | DUAN J, HUANG L, WANG T, et al. Shaping the contact between Li metal anode and solid-state electrolytes[J]. Advanced Functional Materials, 2020, 30(15): doi: 10.1002/adfm.201908701. |
45 | YAO M, RUAN Q Q, YU T H, et al. Solid polymer electrolyte with in situ generated fast Li+ conducting network enable high voltage and dendrite-free lithium metal battery[J]. Energy Storage Materials, 2022, 44: 93-103. |
46 | ZHOU C T, ZHENG L, HE T H, et al. Rational design of a carbonate-glyme hybrid electrolyte for practical anode-free lithium metal batteries[J]. Energy Storage Materials, 2021, 42: 295-306. |
47 | CHEN Y, ZHAO W M, ZHANG Q H, et al. Armoring LiNi1/3Co1/3Mn1/3O2 cathode with reliable fluorinated organic-inorganic hybrid interphase layer toward durable high rate battery[J]. Advanced Functional Materials, 2020, 30(19): doi: 10.1002/adfm.202000396. |
48 | AHN J, IM J, SEO H, et al. Enhancing the cycling stability of Ni-rich LiNi0.83Co0.11Mn0.06O2 cathode at 4.5 V via 2, 4-difluorobiphenyl additive[J]. Journal of Power Sources, 2021, 512: doi: 10.1016/j.jpowsour.2021.230513. |
49 | HA Y, FINEGAN D P, COLCLASURE A M, et al. Evaluating temperature dependent degradation mechanisms of silicon-graphite electrodes and the effect of fluoroethylene carbonate electrolyte additive[J]. Electrochimica Acta, 2021, 394: doi: 10.1016/j.electacta. 2021.139097. |
50 | HUANG L B, LI G, LU Z Y, et al. Trans-difluoroethylene carbonate as an electrolyte additive for microsized SiOx@C anodes[J]. ACS Applied Materials & Interfaces, 2021, 13(21): 24916-24924. |
51 | JIAO T P, LIU G P, ZOU Y, et al. A novel trimethylsilyl 2-(fluorosulfonyl)difluoroacetate additive for stabilizing the Ni-rich LiNi0.9Co0.05Mn0.05O2/electrolyte interface[J]. Journal of Power Sources, 2021, 515: doi: 10.1016/j.jpowsour.2021.230618. |
52 | LIANG J Y, ZHANG X D, ZHANG Y, et al. Cooperative shielding of Bi-electrodes via in situ amorphous electrode-electrolyte interphases for practical high-energy lithium-metal batteries[J]. Journal of the American Chemical Society, 2021, 143(40): 16768-16776. |
53 | LIN S S, HUA H M, LAI P B, et al. A multifunctional dual-salt localized high-concentration electrolyte for fast dynamic high-voltage lithium battery in wide temperature range[J]. Advanced Energy Materials, 2021, 11(36): doi: 10.1002/aenm.202101775. |
54 | LIU G, JIAO T, CHENG Y, et al. Interfacial enhancement of silicon-based anode by a lactam-type electrolyte additive[J]. ACS Applied Energy Materials, 2021, 4(9): 10323-10332. |
55 | YANG M, MO Y. Interfacial defect of lithium metal in solid-state batteries[J]. Angewandte Chemie, 2021, 60(39): 21494-21501. |
56 | WAN H, ZHANG B, LIU S, et al. Understanding LiI-LiBr catalyst activity for solid state Li2S/S reactions in an all-solid-state lithium battery[J]. Nano letters, 2021, 21(19): 8488-8494. |
57 | ZAHIRI B, PATRA A, KIGGINS C, et al. Revealing the role of the cathode-electrolyte interface on solid-state batteries[J]. Nature Materials, 2021, 20(10): 1392-1400. |
58 | KARUPPIAH C, BESHAHWURED S L, WU Y S, et al. Patterning and a composite protective layer provide modified Li metal anodes for dendrite-free high-voltage solid-state lithium batteries[J]. ACS Applied Energy Materials, 2021, 4(10): 11248-11257. |
59 | YANG C, WU Q, XIE W, et al. Copper-coordinated cellulose ion conductors for solid-state batteries[J]. Nature, 2021, 598(7882): 590-596. |
60 | CHOI Y G, SHIN J C, PARK A, et al. Pyrrolidinium-PEG ionic copolyester: Li-ion accelerator in polymer network solid-state electrolytes[J]. Advanced Energy Materials, 2021, 11(44): doi: 10. 1002/aenm.202102660. |
61 | WANG Q, WAN J, CAO X, et al. Organophosphorus hybrid solid electrolyte interphase layer based on LixPO4 enables uniform lithium deposition for high-performance lithium metal batteries[J]. Advanced Functional Materials, 2021, doi: 10.1002/adfm.202107923. |
62 | JUNG Y, PARK S, KIM J K, et al. Toward achieving high kinetics in anodeless Li2S battery: Surface modification of Cu current collector[J]. Advanced Functional Materials, 2021, doi: 10.1002/adfm.202109759. |
63 | ZHANG J, WANG J, QIAN M, et al. Lithiothermic-synchronous construction of Mo-Li2S-graphene nanocomposites for high-energy Li2S//Si-C battery[J]. Advanced Functional Materials, 2021, doi: 10.1002/adfm.202108305. |
64 | BI C X, ZHAO M, HOU L P, et al. Anode material options toward 500 W·h/kg lithium-sulfur batteries[J]. Advanced Science, 2021, doi: 10.1002/advs.202103910. |
65 | SUN C Y, YANG Y H, BIAN X F, et al. Uniform deposition of Li-metal anodes guided by 3D current collectors with in situ modification of the lithiophilic matrix[J]. ACS Applied Materials & Interfaces, 2021, 13(41): 48691-48699. |
66 | HUANG Y, SHAIBANI M, GAMOT T D, et al. A saccharide-based binder for efficient polysulfide regulations in Li-S batteries[J]. Nature Communications, 2021, 12(1): doi: 10.1038/s41467-021-25612-5. |
67 | QI C Y, LI Z, WANG G, et al. Microregion welding strategy prevents the formation of inactive sulfur species for high-performance Li-S battery[J]. Advanced Energy Materials, 2021, 11(39): doi: 10. 1002/aenm.202102024. |
68 | SUN R, HU J, SHI X, et al. Water-soluble cross-linking functional binder for low-cost and high-performance lithium-sulfur batteries[J]. Advanced Functional Materials, 2021, 31(42): doi: 10.1002/adfm. 202104858. |
69 | ZHANG T, HU F, SHAO W, et al. Sulfur-rich polymers based cathode with epoxy/ally dual-sulfur-fixing mechanism for high stability lithium-sulfur battery[J]. ACS Nano, 2021, 15(9): 15027-15038. |
70 | ZOU Y, GUO D, YANG B, et al. Toward high-performance lithium-sulfur batteries: Efficient anchoring and catalytic conversion of polysulfides using P-doped carbon foam[J]. ACS Applied Materials & Interfaces, 2021, 13(42): 50093-50100. |
71 | FAN Q, JIANG J, ZHANG S, et al. Accelerated polysulfide redox in binder-free Li2S cathodes promises high-energy-density lithium-sulfur batteries[J]. Advanced Energy Materials, 2021, 11(32): doi: 10.1002/aenm.202100957. |
72 | SACCONE M A, GREER J R. Understanding and mitigating mechanical degradation in lithium-sulfur batteries: Additive manufacturing of Li2S composites and nanomechanical particle compressions[J]. Journal of Materials Research, 2021, 36(18): 3656-3666. |
73 | SHEN Y F, SHEN X H, YANG M, et al. Achieving desirable initial coulombic efficiencies and full capacity utilization of Li-ion batteries by chemical prelithiation of graphite anode[J]. Advanced Functional Materials, 2021, 31(24): doi: 10.1002/adfm.202101181. |
74 | GENG F S, YANG Q, LI C, et al. Mapping the distribution and the microstructural dimensions of metallic lithium deposits in an anode-free battery by in situ EPR imaging[J]. Chemistry of Materials, 2021, 33(21): 8223-8234. |
75 | BRUGGE R H, PESCI F M, CAVALLARO A, et al. The origin of chemical inhomogeneity in garnet electrolytes and its impact on the electrochemical performance[J]. Journal of Materials Chemistry A, 2020, 8(28): 14265-14276. |
76 | HAMANN T, ZHANG L, GONG Y H, et al. The effects of constriction factor and geometric tortuosity on Li-ion transport in porous solid-state Li-ion electrolytes[J]. Advanced Functional Materials, 2020, 30(14): doi: 10.1002/afma.201910362. |
77 | VIDAL D, LEYS C, MATHIEU B, et al. Si-C/G based anode swelling and porosity evolution in 18650 casing and in pouch cell[J]. Journal of Power Sources, 2021, 514: doi: 10.1016/j.jpowsour. 2021.230552. |
78 | LI S P, XIONG R Y, HAN Z L, et al. Unveiling low-tortuous effect on electrochemical performance toward ultrathick LiFePO4 electrode with 100 mg/cm2 area loading[J]. Journal of Power Sources, 2021, 515: doi: 10.1016/j.jpowsour.2021.230588. |
79 | HUANG C J, THIRUMALRAJ B, TAO H C, et al. Decoupling the origins of irreversible coulombic efficiency in anode-free lithium metal batteries[J]. Nature Communications, 2021, 12(1): doi: 10. 1038/s41467-021-21683-6. |
80 | DOSE W M, MORZY J K, MAHADEVEGOWDA A, et al. The influence of electrochemical cycling protocols on capacity loss in nickel-rich lithium-ion batteries[J]. Journal of Materials Chemistry A, 2021, 9(41): 23582-23596. |
81 | FANG C C, LU B Y, PAWAR G, et al. Pressure-tailored lithium deposition and dissolution in lithium metal batteries[J]. Nature Energy, 2021, 6(10): 987-994. |
82 | XIONG J H, LIANG Z, GUO Q K, et al. Three methods to reduce gas evolution from a lithium-rich manganese/graphite pouch cell[J]. Energy & Fuels, 2021, 35(18): 15143-15152. |
83 | GAO N, KIM S, CHINNAM P, et al. Methodologies for design, characterization and testing of electrolytes that enable extreme fast charging of lithium-ion cells[J]. Energy Storage Materials, 2022, 44: 296-312. |
84 | MELIN T, LUNDSTRÖM R, BERG E J. Revisiting the ethylene carbonate-propylene carbonate mystery with operando characterization[J]. Advanced Materials Interfaces, 2021: doi: 10.1002/admi.202101258. |
86 | MÜLLER S, SAUTER C, SHUNMUGASUNDARAM R, et al. Deep learning-based segmentation of lithium-ion battery microstructures enhanced by artificially generated electrodes[J]. Nature Communication, 2021, 12(1): doi: 10.1038/s41467-021-26480-9. |
87 | CHOUCHANE M, ARCELUS O, FRANCO A A. Heterogeneous solid-electrolyte interphase in graphite electrodes assessed by 4D-resolved computational simulations[J]. Batteries & Supercaps, 2021, 4(9): 1457-1463. |
88 | YUAN C H, LU W Q, XU J. Unlocking the electrochemical-mechanical coupling behaviors of dendrite growth and crack propagation in all-solid-state batteries[J]. Advanced Energy Materials, 2021, 11(36): doi: 10.1002/aenm.202101807. |
89 | HAN B, ZHANG Y, LIAO C, et al. Probing the reactivity of the active material of a Li-ion silicon anode with common battery solvents[J]. ACS Applied Materials & Interfaces, 2021, 13(24): 28017-28026. |
90 | LIU M, VATAMANU J, CHEN X, et al. Hydrolysis of LiPF6-containing electrolyte at high voltage[J]. ACS Energy Letters, 2021, 6(6): 2096-2102. |
91 | CHEN Y L, YU Z A, RUDNICKI P, et al. Steric effect tuned ion solvation enabling stable cycling of high-voltage lithium metal battery[J]. Journal of the American Chemical Society, 2021, 143(44): 18703-18713. |
92 | WANG C H, AOYAGI K, MUELLER T. Computational design of double-layer cathode coatings in all-solid-state batteries[J]. Journal of Materials Chemistry A, 2021, 9(40): 23206-23213. |
93 | NOLAN A M, WICKRAMARATNE D, BERNSTEIN N, et al. Li+ diffusion in amorphous and crystalline Al2O3 for battery electrode coatings[J]. Chemistry of Materials, 2021, 33(19): 7795-7804. |
94 | GONZALEZ-AGUIRRE E, GASTELURRUTIA J, SURESH PATIL M, et al. Avoiding thermal issues during fast charging starting with proper cell selection criteria[J]. Journal of the Electrochemical Society, 2021, 168(11): doi: 10.1149/1945-7111/ac3348. |
95 | SHENG J, ZHANG Q, LIU M, et al. Stabilized solid electrolyte interphase induced by ultrathin boron nitride membranes for safe lithium metal batteries[J]. Nano Letters, 2021, 21(19): 8447-8454. |
96 | OBREZKOV F A, FEDINA E S, SOMOVA A I, et al. Facile method for cross-linking aromatic polyamines to engender beyond lithium ion cathodes for dual-ion batteries[J]. ACS Applied Energy Materials, 2021, 4(10): 11827-11835. |
97 | LIU Y, YU P P, SUN Q T, et al. Predicted operando polymerization at lithium anode via boron insertion[J]. ACS Energy Letters, 2021, 6(6): 2320-2327. |
98 | TAKENO M, KATAKURA S, MIYAZAKI K, et al. Relation between mixing processes and properties of lithium-ion battery electrode-slurry[J]. Electrochemistry, 2021, 89(6): 585-589. |
99 | DENG D R, YUAN R M, YU P K, et al. An enhanced electrode via coupling with a conducting molecule to extend interfacial reactions[J]. Advanced Energy Materials, 2021, 11(33): doi: 10.1002/aenm. 202170129. |
100 | ZHEN E M, JIANG J M, LV C, et al. Effects of binder content on low-cost solvent-free electrodes made by dry-spraying manufacturing for lithium-ion batteries[J]. Journal of Power Sources, 2021, 515: doi: 10.1016/j.jpowsour.2021.230644. |
[1] | 时雨, 张忠, 杨晶莹, 钱薇, 李昊, 赵祥, 杨欣桐. 储能电池系统提供AGC调频的机会成本建模与市场策略[J]. 储能科学与技术, 2022, 11(7): 2366-2373. |
[2] | 元佳宇, 李昕光, 王文超, 付程阔. 考虑质量流量的电池组蛇形冷却结构仿真[J]. 储能科学与技术, 2022, 11(7): 2274-2281. |
[3] | 黄鹏, 聂枝根, 陈峥, 舒星, 沈世全, 杨继鹏, 申江卫. 基于优化Elman神经网络的锂电池容量预测[J]. 储能科学与技术, 2022, 11(7): 2282-2294. |
[4] | 张肖洒, 王宏源, 李振彪, 夏志美. 废旧磷酸铁锂电池电极材料的硫酸化焙烧-水浸新工艺[J]. 储能科学与技术, 2022, 11(7): 2066-2074. |
[5] | 徐雄文, 聂阳, 涂健, 许峥, 谢健, 赵新兵. 普鲁士蓝正极软包钠离子电池的滥用性能[J]. 储能科学与技术, 2022, 11(7): 2030-2039. |
[6] | 裴英伟, 张红, 王星辉. 可充电锌离子电池电解质的研究进展[J]. 储能科学与技术, 2022, 11(7): 2075-2082. |
[7] | 霍思达, 薛文东, 李新丽, 李勇. 基于CiteSpace知识图谱的锂电池复合电解质可视化分析[J]. 储能科学与技术, 2022, 11(7): 2103-2113. |
[8] | 申晓宇, 岑官骏, 乔荣涵, 朱璟, 季洪祥, 田孟羽, 金周, 闫勇, 武怿达, 詹元杰, 俞海龙, 贲留斌, 刘燕燕, 黄学杰. 锂电池百篇论文点评(2022.4.1—2022.5.31)[J]. 储能科学与技术, 2022, 11(7): 2007-2022. |
[9] | 周伟东, 黄秋, 谢晓新, 陈科君, 李薇, 邱介山. 固态锂电池聚合物电解质研究进展[J]. 储能科学与技术, 2022, 11(6): 1788-1805. |
[10] | 李一涛, 沈凯尔, 庞全全. 有机物辅助的硫化物电解质基固态电池[J]. 储能科学与技术, 2022, 11(6): 1902-1918. |
[11] | 周伟, 符冬菊, 刘伟峰, 陈建军, 胡照, 曾燮榕. 废旧磷酸铁锂动力电池回收利用研究进展[J]. 储能科学与技术, 2022, 11(6): 1854-1864. |
[12] | 张浩然, 车海英, 郭凯强, 申展, 张云龙, 陈航达, 周煌, 廖建平, 刘海梅, 马紫峰. Sn掺杂NaNi1/3Fe1/3Mn1/3-x Sn x O2 正极材料制备及其电化学性能[J]. 储能科学与技术, 2022, 11(6): 1874-1882. |
[13] | 张言, 王海, 刘朝孟, 张德柳, 王佳东, 李建中, 高宣雯, 骆文彬. 锂离子电池富镍三元正极材料NCM的研究进展[J]. 储能科学与技术, 2022, 11(6): 1693-1705. |
[14] | 乔荣涵, 岑官骏, 申晓宇, 田孟羽, 季洪祥, 田丰, 起文斌, 金周, 武怿达, 詹元杰, 闫勇, 贲留斌, 俞海龙, 刘燕燕, 黄学杰. 锂电池百篇论文点评(2022.2.1—2022.3.31)[J]. 储能科学与技术, 2022, 11(5): 1289-1304. |
[15] | 汪红辉, 吴泽钦, 储德韧. 轻度过放模式下钛酸锂电池性能及热安全性[J]. 储能科学与技术, 2022, 11(5): 1305-1313. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||