1 |
KIM T, SONG W T, SON D Y, et al. Lithium-ion batteries: Outlook on present, future, and hybridized technologies[J]. Journal of Materials Chemistry A, 2019, 7(7): 2942-2964.
|
2 |
ARMAND M, TARASCON J M. Building better batteries[J]. Nature, 2008, 451: 652-657.
|
3 |
GOODENOUGH J B, PARK K S. The Li-ion rechargeable battery: A perspective[J]. Journal of the American Chemical Society, 2013, 135(4): 1167-1176.
|
4 |
TARASCON J M, ARMAND M. Issues and challenges facing rechargeable lithium batteries[J]. Nature, 2001, 414(6861): 359-367.
|
5 |
Fast-forward to 2020: New trends transforming the world as we know it[R]. Frost and Sullivan, 2014.
|
6 |
ARMAND M, AXMANN P, BRESSER D, et al. Lithium-ion batteries-current state of the art and anticipated developments[J]. Journal of Power Sources, 2020, 479: doi: 10.1016/j.jpowsour. 2020.228708.
|
7 |
WINTER M, BARNETT B, XU K. Before Li ion batteries[J]. Chemical Reviews, 2018, 118(23): 11433-11456.
|
8 |
李泓. 锂离子电池基础科学问题(XV)——总结和展望[J]. 储能科学与技术, 2015, 4(3): 306-318.
|
|
LI H. Fundamental scientific aspects of lithium ion batteries (XV) ——Summary and outlook[J]. Energy Storage Science and Technology, 2015, 4(3): 306-318.
|
9 |
LIU D Q, SHADIKE Z, LIN R Q, et al. Review of recent development of in situ/operando characterization techniques for lithium battery research[J]. Advanced Material, 2019, 31(28): doi: 10.1002/adma.201806620.
|
10 |
SAWAKI Y, SHIBA T, KISHIMI M, et al. In-operando cross-sectional observation of graphite anode with deposited lithium and measurement of internal cell resistance[J]. Electrochemistry, 2016, 84(9): 695-698.
|
11 |
KÜHNLE H, KNOBBE E, FIGGEMEIER E. In situ optical investigations of lithium depositions on pristine and aged lithium metal electrodes[J]. Journal of the Electrochemical Society, 2021, 168: doi: 10.1149/1945-7111/abdeeb.
|
12 |
YUI Y, ONO Y, HAYASHI M, et al. Sodium-ion insertion/extraction properties of Sn-Co anodes and Na pre-doped Sn-Co anodes[J]. Journal of the Electrochemical Society, 2015,162 (2): A3098-A3102.
|
13 |
CHEN J, YANG L, HAN Y, et al. An in situ system for simultaneous stress measurement and optical observation of silicon thin film electrodes[J]. Journal of Power Sources, 2019, 444: doi: 10.1016/j.jpowsour.2019.227227.
|
14 |
YANG W, XIE H M, SHI B Q, et al. In-situ experimental measurements of lithium concentration distribution and strain field of graphite electrodes during electrochemical process[J]. Journal of Power Sources, 2019, 423: 174-182.
|
15 |
MARKEVICH E, SALITRA G, AURBACH D. Low temperature performance of amorphous monolithic silicon anodes: comparative study of silicon and graphite electrodes[J]. Journal of the Electrochemical Society, 2016, 163(10): A2407-A2412.
|
16 |
侯佼, 侯春平, 孟令桐, 等. 锂离子电池硅基负极材料的研究进展[J]. 炭素技术, 2020, 39(6): 1-5.
|
|
HOU J, HOU C P, MENG L T, et al. Research progress of silicon-based anode materials for lithium ion batteries[J]. Carbon Techniques, 2020, 39(6): 1-5.
|
17 |
FOROOZAN T, SHARIFI-ASL S, SHAHBAZIAN-YASSAR R. Mechanistic understanding of Li dendrites growth by in-situ/operando imaging techniques[J]. Journal of Power Sources, 2020, 461: doi: 10.1016/j.jpowsour.2020.228135.
|
18 |
ORSINI F, DU PASQUIER A, BEAUDOIN B, et al.In situ scanning electron microscopy (SEM) observation of interfaces within plastic lithium batteries[J]. Journal of Power Sources, 1998, 76: 19-29.
|
19 |
WANDT J, MARINO C, GASTEIGER H A, et al. Operando electron paramagnetic resonance spectroscopy-formation of mossy lithium on lithium anodes during charge-discharge cycling[J]. Energy & Environmental Science, 2015, 8(4): 1358-1367.
|
20 |
HARRIS S J, TIMMONS A, BAKER D R, et al. Direct in situ measurements of Li transport in Li-ion battery negative electrodes[J]. Chemical Physics Letters, 2010, 485: 265-274.
|
21 |
HE Y, REN X D, XU Y B, et al .Origin of lithium whisker formation and growth under stress[J]. Nature Nanotechnology, 2019, 14: 1042-1047.
|