1 |
宋德生. 从阴极射线的争议到电子的发现[J]. 物理, 1987(5): 311-316.
|
|
SONG D S H. From the dispute of cathode rays to the discovery of electrons[J]. Physics, 1987(5): 311-316.
|
2 |
DOWNARD K M. Historical account: Francis William Aston: The man behind the mass spectrograph[J]. European Journal of Mass Spectrometry, 2007, 13(3): 177-190.
|
3 |
MCCORMACK A L, SCHIELTZ D M, GOODE B, et al. Direct analysis and identification of proteins in mixtures by LC/MS/MS and database searching at the low-femtomole level[J]. Analytical Chemistry, 1997, 69(4): 767-776.
|
4 |
BOERSEMA P J, RAIJMAKERS R, LEMEER S, et al. Multiplex peptide stable isotope dimethyl labeling for quantitative proteomics[J]. Nature Protocols, 2009, 4(4): 484-494.
|
5 |
GU L W, KELM M A, HAMMERSTONE J F, et al. Screening of foods containing proanthocyanidins and their structural characterization using LC-MS/MS and thiolytic degradation[J]. Journal of Agricultural and Food Chemistry, 2003, 51(25): 7513-7521.
|
6 |
KHUDA S E, SHARMA G M, GAINES D, et al. Survey of undeclared egg allergen levels in the most frequently recalled food types (including products bearing precautionary labelling)[J]. Food Additives & Contaminants: Part A, 2016, 33(8): 1265-1273.
|
7 |
赵蓓蓓, 佘旭辉, 刘伟霞, 等. 质谱技术在医学检验中的应用[J]. 中华临床实验室管理, 2018, 6(1): 5-9.
|
|
ZHAO B B, SHE X H, LIU W X, et al. The application of mass spectrometry technology in clinical laboratory[J]. Chinese Journal of Clinical Laboratory Management, 2018, 6(1): 5-9.
|
8 |
黄彦瑜. 锂电池发展简史[J]. 物理, 2007, 36(8): 643-651.
|
|
HUANG Y Y. Brief history of lithium battery development[J]. Physics, 2007, 36(8): 643-651.
|
9 |
ŚWIATOWSKA J, LAIR V, PEREIRA-NABAIS C, et al. XPS, XRD and SEM characterization of a thin ceria layer deposited onto graphite electrode for application in lithium-ion batteries[J]. Applied Surface Science, 2011, 257(21): 9110-9119.
|
10 |
BAI Y, YIN Y F, YANG J M, et al. Raman study of pure, C-coated and Co-doped LiFePO4: Thermal effect and phase stability upon laser heating[J]. Journal of Raman Spectroscopy, 2011, 42(4): 831-838.
|
11 |
WU C, BAI Y, WU F. Fourier-transform infrared spectroscopic studies on the solid electrolyte interphase formed on Li-doped spinel Li1.05Mn1.96O4, cathode[J]. Journal of Power Sources, 2009, 189(1): 89-94.
|
12 |
NAVRATIL R, KOTZIANOVA A, HALOUZKA V, et al. Polymer lead pencil graphite as electrode material: voltammetric, XPS and Raman study[J]. Journal of Electroanalytical Chemistry, 2016, 783: 152-160.
|
13 |
TOCHIHARA M, NARA H, MUKOYAMA D, et al. Liquid chromatography-quadruple time of flight mass spectrometry analysis of products in degraded lithium-ion batteries[J]. Journal of the Electrochemical Society, 2015, 162(10): A2008-A2015.
|
14 |
SHENG S Z. A review on electrolyte additives for lithium-ion batteries[J]. Journal of Power Sources, 2006, 162(2): 1379-1394.
|
15 |
OTA H, AKAI T, NAMITA H, et al. XAFS and TOF-SIMS analysis of SEI layers on electrodes[J]. Journal of Power Sources, 2003, 119/120/121: 567-571.
|
16 |
KIM H, GRUGEON S, GACHOT G, et al. Ethylene bis-carbonates as telltales of SEI and electrolyte health, role of carbonate type and new additives[J]. Electrochimica Acta, 2014, 136(8): 157-165.
|
17 |
GACHOT G, RIBIÈRE P, MATHIRON D, et al. Gas chromatography/mass spectrometry as a suitable tool for the Li-ion battery electrolyte degradation mechanisms study[J]. Analytical Chemistry, 2011, 83(2): 478-485.
|
18 |
SCHULTZ C, VEDDER S, WINTER M, et al. Qualitative investigation of the decomposition of organic solvent based lithium ion battery electrolytes with LC-IT-TOF-MS[J]. Analytical Chemistry, 2016, 88(22): 11160-11168.
|
19 |
WEBER W, KRAFT V, GRÜTZKE M, et al. Identification of alkylated phosphates by gas chromatography-mass spectrometric investigations with different ionization principles of a thermally aged commercial lithium ion battery electrolyte[J]. Journal of Chromatography A, 2015, 1394: 128-136.
|
20 |
SCHULTZ C, VEDDER S, WINTER M, et al. Qualitative investigation of the decomposition of organic solvent based lithium ion battery electrolytes with LC-IT-TOF-MS[J]. Analytical Chemistry, 2016, 88(22): 11160-11168.
|
21 |
KRAFT V, WEBER W, STREIPERT B, et al. Qualitative and quantitative investigation of organophosphates in an electrochemically and thermally treated lithium hexafluorophosphate-based lithium ion battery electrolyte by a developed liquid chromatography-tandem quadrupole mass spectrometry method[J]. RSC Advances, 2016, 6(1): 8-17.
|
22 |
KRAFT V, WEBER W, GRÜTZKE M, et al. Study of decomposition products by gas chromatography-mass spectrometry and ion chromatography-electrospray ionization-mass spectrometry in thermally decomposed lithium hexafluorophosphate-based lithium ion battery electrolytes[J]. RSC Advances, 2015, 5(98): 80150-80157.
|
23 |
GACHOT G, GRUGEON S, ESHETU G G, et al. Thermal behaviour of the lithiated-graphite/electrolyte interface through GC/MS analysis[J]. Electrochimica Acta, 2012, 83(83): 402-409.
|
24 |
LARUELLE S, PILARD S, GUENOT P, et al. Identification of Li-based electrolyte degradation products through DEI and ESI high-resolution mass spectrometry[J]. Journal of the Electrochemical Society, 2004, 151(8): A1202-A1209.
|
25 |
WRODNIGG G H, BESENHARD J O, WINTER M. Ethylene sulfite as electrolyte additive for lithium-ion cells with graphitic anodes[J]. Journal of the Electrochemical Society, 1999, 146(2): 470-472.
|
26 |
DAGGER T, HENSCHEL J, RAD B, et al. Investigating the lithium ion battery electrolyte additive tris (2, 2, 2-trifluoroethyl) phosphite by gas chromatography with a flame ionization detector (GC-FID)[J]. RSC Advances, 2017, 7(84): 53048-53055.
|
27 |
PELED E, GOLODNITSKY D, ULUS A, et al. Effect of carbon substrate on SEI composition and morphology[J]. Electrochimica Acta, 2004, 50(2/3):391-395.
|
28 |
XING L D, LI W S, WANG C, et al. Theoretical investigations on oxidative stability of solvents and oxidative decomposition mechanism of ethylene carbonate for lithium ion battery use[J]. The Journal of Physical Chemistry B, 2009, 113(52): 16596-16602.
|
29 |
SLOOP S E, KERR J B, KINOSHITA K. The role of Li-ion battery electrolyte reactivity in performance decline and self-discharge[J]. Journal of Power Sources, 2003, 119(3): 330-337.
|
30 |
BELHAROUAK I, KOENIG G M, TAN T, et al. Performance degradation and gassing of Li4Ti5O12/LiMn2O4 lithium-ion cells[J]. Journal of the Electrochemical Society, 2012, 159(8): A1165-A1170.
|
31 |
黄丽, 金明钢, 蔡惠群, 等. 聚合物锂离子电池不同化成电压下产生气体的研究[J]. 电化学, 2003, 9(4): 387-392.
|
|
HUANG L, JIN M G, CAI H Q, et al. Study on the gas generation in different charging voltage during formation process in polymer lithium-ion battery[J]. Electrochemistry, 2003, 9(4): 387-392.
|
32 |
KUMAI K, MIYASHIRO H, KOBAYASHI Y, et al. Gas generation mechanism due to electrolyte decomposition in commercial lithium-ion cell[J]. Journal of Power Sources, 1999, 81/82(9): 715-719.
|
33 |
KONG W H, LI H, HUANG X J, et al. Gas evolution behaviors for several cathode materials in lithium-ion batteries[J]. Journal of Power Sources, 2005, 142(1): 285-291.
|
34 |
HUANG Y, LIN Y C, JENKINS D M, et al. Thermal stability and reactivity of cathode materials for Li-ion batteries[J]. ACS Applied Materials & Interfaces, 2016, 8(11): 7013-7021.
|
35 |
SHIN J S, HAN C H, JUNG U H, et al. Effect of Li2CO3, additive on gas generation in lithium-ion batteries[J]. Journal of Power Sources, 2002, 109(1): 47-52.
|