储能科学与技术 ›› 2022, Vol. 11 ›› Issue (1): 66-77.doi: 10.19799/j.cnki.2095-4239.2021.0275
收稿日期:
2021-06-20
修回日期:
2021-07-21
出版日期:
2022-01-05
发布日期:
2022-01-10
通讯作者:
吴文娟
E-mail:2580981649@qq.com;wenjuanwu@njfu.edu.cn
作者简介:
李鹏辉(1996—),男,硕士研究生,主要从事天然高分子改性与应用研究工作,E-mail:基金资助:
Penghui LI(), Caiwen WU, Jianpeng REN, Wenjuan WU()
Received:
2021-06-20
Revised:
2021-07-21
Online:
2022-01-05
Published:
2022-01-10
Contact:
Wenjuan WU
E-mail:2580981649@qq.com;wenjuanwu@njfu.edu.cn
摘要:
木质素是地球上储量充足的芳香族高聚物,结构中富含羟基、羧基、醚基等多种官能团。这些官能团的存在允许选择性的修饰这种复杂的化合物。木质素是制浆造纸工业的副产品,成本便宜、来源广泛,通过简单温和的化学活化制备的多孔木质素基碳已成为环境净化、电催化和储能领域的研究热点,尤其是作为锂离子电池的负极材料。本文简要介绍了锂离子电池的储能机理及特点,总结了木质素作为锂离子电池中负极材料的机理、制备方法与研究近况,具体分为基于木质素的分层多孔碳、碳微球、碳纤维、碳纳米管以及其他复合物等,详细阐述了木质素在锂离子电池的隔膜、黏合剂以及负极添加剂的应用,拓展概述了木质素在锂硫电池中的应用。最后,提出了木质素用于锂离子电池电极材料中存在的问题和对今后研究工作的展望。
中图分类号:
李鹏辉, 吴彩文, 任建鹏, 吴文娟. 木质素作为锂离子电池电极材料的研究进展[J]. 储能科学与技术, 2022, 11(1): 66-77.
Penghui LI, Caiwen WU, Jianpeng REN, Wenjuan WU. Research progress of lignin as electrode materials for lithium-ion batteries[J]. Energy Storage Science and Technology, 2022, 11(1): 66-77.
表1
锂离子电池中的木质素负极研究进展"
材料 | 合成方法 | 电化学性能 | 参考文献 |
---|---|---|---|
木质素基多孔碳 | 酶水解木质素碳酸钾活化 | 电流密度200 mA/g,循环200次,容量520 mA·h/g | [ |
木质素基多孔碳 | 氢氧化钾活化衍生分层多孔碳 | 电流密度200 mA/g,循环400次,容量470 mA·h/g | [ |
木质素基多孔碳 | 稻壳木质素多孔碳负载氧化锌粒子 | 电流密度200 mA/g,循环110次,容量898 mA·h/g | [ |
木质素基多孔碳 | 氯化锌活化,500 ℃(一步法)煅烧 | 电流密度200 mA/g,循环100次,容量469 mA·h/g | [ |
木质素基碳微球 | 酸性条件,900 ℃下碳化 | 电流密度20 mA/g,循环100次,容量180 mA·h/g | [ |
木质素基碳微球 | 造纸黑液木质素,高温煅烧合成 | 电流密度1000 mA/g,循环50次,容量558 mA·h/g | [ |
木质素基碳微球 | 木质素磺酸钠水热法合成 | 电流密度260 mA/g,循环100次,容量389 mA·h/g | [ |
木质素含氮碳纳米球 | 2-乙基苯胺与木质素磺酸盐原位聚合 | 电流密度100 mA/g,循环20次,容量353 mA·h/g | [ |
硅/碳中空微球 | 切缝损失硅和木质素喷雾干燥 | 电流密度200 mA/g,循环100次,容量843 mA·h/g | [ |
碳纳米纤维 | 木质素和聚乳酸或聚氨酯静电纺丝和碳化 | 电流密度136 mA/g,循环500次,容量611 mA·h/g | [ |
碳纳米纤维 | 木质素和聚乙烯醇静电纺丝,碳化,氧化铁纳米粒子表面功能化 | 电流密度50 mA/g,循环80次,容量715 mA·h/g | [ |
碳纳米纤维 | 木质素-聚环氧乙烷共混物通过静电纺丝、碳化和尿素热退火 | 电流密度30 mA/g,循环50次,容量576 mA·h/g | [ |
碳纳米纤维 | 纯熔纺木质素的氧化稳定化和碳化 | 电流密度200 mA/g,循环5次,容量335 mA·h/g | [ |
碳纳米纤维 | 木质素使用加工技术和热转化方法纤维碳电极材料 | 电流密度360 mA/g,循环70次,容量350 mA·h/g | [ |
木质素和碳纳米管复合 | 疏水自组装工艺制备,碳化 | 电流密度200 mA/g,循环300次,容量614 mA·h/g | [ |
木质素与二氧化锰复合 | 离子液体活化硫酸盐木质素,负载二氧化锰 | 电流密度50 mA/g,循环20次,容量610 mA·h/g | [ |
二氧化硅/多孔木质素碳复合 | 水热反应制二氧化硅/多孔木质素碳复合物,碳化 | 电流密度100 mA/g,循环100次,容量820 mA·h/g | [ |
二氧化硅/多孔木质素碳复合 | 静电诱导自组装和双模板法合成木质素衍生多孔碳包封的SiO2 | 电流密度100 mA/g,循环100次,容量1109 mA·h/g | [ |
硅负载碳材料 | 碱木质素或其碳涂层合成偶氮聚合物氮掺杂碳包覆 | 电流密度200 mA/g,循环150次,容量882 mA·h/g | [ |
碳/硅复合纤维 | 熔融加工碳/硅复合纤维,原位涂覆的稳定硅颗粒 | 电流密度200 mA/g,循环20次,容量超过600 mA·h/g | [ |
木质素/二氧化硅复合 | 稻壳木质素,碱提酸沉,碳化、镁热还原改性 | 电流密度1000 mA/g,循环1000次,容量572 mA·h/g | [ |
木质素/氧化锌复合 | 酶解木质素与乙酸锌碱性条件水热法合成,碳化和酸洗 | 电流密度200 mA/g,循环200次,容量705 mA·h/g | [ |
软木衍生的生物石墨 | 在相对较低的温度下将生物材料转化结晶石墨 | 电流密度200 mA/g,循环100次,容量将近300 mA·h/g | [ |
预锂化木质素 | 酸碱反应,氢氧化锂处理木质素 | 电流密度500 mA/g,循环600次,容量135 mA·h/g | [ |
1 | LIU H Y, XU T, LIU K, et al. Lignin-based electrodes for energy storage application[J]. Industrial Crops and Products, 2021, 165: doi: 10.1016/j.indcrop.2021.113425. |
2 | AN L L, SI C L, WANG G H, et al. Enhancing the solubility and antioxidant activity of high-molecular-weight lignin by moderate depolymerization viain situ ethanol/acid catalysis[J]. Industrial Crops and Products, 2019, 128: 177-185. |
3 | BENGTSSON A, BENGTSSON J, SEDIN M, et al. Carbon fibers from lignin-cellulose precursors: Effect of stabilization conditions[J]. ACS Sustainable Chemistry & Engineering, 2019, 7(9): 8440-8448. |
4 | JIANG B, ZHANG Y, ZHAO H F, et al. Structure-antioxidant activity relationship of active oxygen catalytic lignin and lignin-carbohydrate complex[J]. International Journal of Biological Macromolecules, 2019, 139: 21-29. |
5 | 吴彩文, 黄丽菁, 邹春阳, 等. 木质素在储能领域中的应用研究进展[J]. 储能科学与技术, 2020, 9(6): 1737-1746. |
WU C W, HUANG L J, ZOU C Y, et al. Research progress of the lignin in application energy storage[J]. Energy Storage Science and Technology, 2020, 9(6): 1737-1746. | |
6 | ESPINOZA-ACOSTA J L, TORRES-CHÁVEZ P I, OLMEDO-MARTÍNEZ J L, et al. Lignin in storage and renewable energy applications: A review[J]. Journal of Energy Chemistry, 2018, 27(5): 1422-1438. |
7 | WU X Y, JIANG J H, WANG C M, et al. Lignin-derived electrochemical energy materials and systems[J]. Biofuels, Bioproducts and Biorefining, 2020, 14(3): 650-672. |
8 | LI W D, SONG B H, MANTHIRAM A. High-voltage positive electrode materials for lithium-ion batteries[J]. Chemical Society Reviews, 2017, 46(10): 3006-3059. |
9 | QI W, SHAPTER J G, WU Q, et al. Nanostructured anode materials for lithium-ion batteries: Principle, recent progress and future perspectives[J]. Journal of Materials Chemistry A, 2017, 5(37): 19521-19540. |
10 | 韩啸, 张成锟, 吴华龙, 等. 锂离子电池的工作原理与关键材料[J]. 金属功能材料, 2021, 28(2): 37-58. |
HAN X, ZHANG C K, WU H L, et al. Working mechanism and key materials of the lithium ion batteries[J]. Metallic Functional Materials, 2021, 28(2): 37-58. | |
11 | 王超君, 陈翔, 彭思侃, 等. 锂离子电池发展现状及其在航空领域的应用分析[J]. 航空材料学报, 2021, 41(3): 83-95. |
WANG C J, CHEN X, PENG S K, et al. Recent advances in lithium-ion batteries and their applications towards aerospace[J]. Journal of Aeronautical Materials, 2021, 41(3): 83-95. | |
12 | XI Y B, WANG Y Y, YANG D J, et al. K2CO3 activation enhancing the graphitization of porous lignin carbon derived from enzymatic hydrolysis lignin for high performance lithium-ion storage[J]. Journal of Alloys and Compounds, 2019, 785: 706-714. |
13 | 张洋, 常珍珍, 于宝军, 等. 木质素基炭材料在锂离子电池中的应用[J]. 炭素, 2016(1): 5-8. |
ZHANG Y, CHANG Z Z, YU B J, et al. Application of lignin-based carbon material in Li-ion battery[J]. Carbon, 2016(1): 5-8. | |
14 | XI Y B, YANG D J, LIU W F, et al. Preparation of porous lignin-derived carbon/carbon nanotube composites by hydrophobic self-assembly and carbonization to enhance lithium storage capacity[J]. Electrochimica Acta, 2019, 303: 1-8. |
15 | 曾茂株, 佘煜琪, 胡玉彬, 等. 木质素多孔炭的制备及应用研究进展[J]. 化工进展, 2021, 40(8): 4573-4586. |
ZENG M Z, SHE Y Q, HU Y B, et al. Progress in preparation and application of lignin porous carbon[J]. Chemical Industry and Engineering Progress, 2021, 40(8): 4573-4586. | |
16 | XI Y B, YANG D J, QIU X Q, et al. Renewable lignin-based carbon with a remarkable electrochemical performance from potassium compound activation[J]. Industrial Crops and Products, 2018, 124: 747-754. |
17 | ZHANG W L, YIN J, LIN Z Q, et al. Facile preparation of 3D hierarchical porous carbon from lignin for the anode material in lithium ion battery with high rate performance[J]. Electrochimica Acta, 2015, 176: 1136-1142. |
18 | YU K F, LIU T, ZHENG Q F, et al. Rice husk lignin-based porous carbon and ZnO composite as an anode for high-performance lithium-ion batteries[J]. Journal of Porous Materials, 2020, 27(3): 875-882. |
19 | LI Y, HUANG Y, SONG K X, et al. Rice husk lignin-derived porous carbon anode material for lithium-ion batteries[J]. Chemistry Select, 2019, 4(14): 4178-4184. |
20 | HE Z W, YANG J, LYU Q F, et al. Effect of structure on the electrochemical performance of nitrogen-and oxygen-containing carbon micro/nanospheres prepared from lignin-based composites[J]. ACS Sustainable Chemistry & Engineering, 2013, 1(3): 334-340. |
21 | FAN L P. Hydrothermal synthesis of lignin-based carbon microspheres as anode material for lithium-ion batteries[J]. International Journal of Electrochemical Science, 2020: 1035-1043. |
22 | JIANG G J. Preparation and electrochemical properties of lignin porous carbon spheres as the negative electrode of lithium ion batteries[J]. International Journal of Electrochemical Science, 2019: 5422-5434. |
23 | 张牮, 李建刚, 亢玉琼, 等. 木质素基碳微球的制备及其储锂性能研究[J]. 化工新型材料, 2020, 48(9): 111-116. |
ZHANG J, LI J G, KANG Y Q, et al. Preparation and lithium storage property of lignin-based carbon microsphere[J]. New Chemical Materials, 2020, 48(9): 111-116. | |
24 | HE Z W, LYU Q F, LIN Q L. Fabrication, characterization and application of nitrogen-containing carbon nanospheres obtained by pyrolysis of lignosulfonate/poly(2-ethylaniline)[J]. Bioresource Technology, 2013, 127: 66-71. |
25 | YANG X F, CHEN X F, QIU J Y, et al. Controllable synthesis of silicon/carbon hollow microspheres using renewable sources for high energy lithium-ion battery[J]. Journal of Solid State Chemistry, 2021, 296: doi: 10.1016/j.jssc.2021.121968. |
26 | RIOS O, TENHAEFF W E, DANIEL C, et al. Lignin-based active anode materials synthesized from low-cost renewable resources: US9359695[P]. 2016-06-07. |
27 | CHATTERJEE S, JONES E B, CLINGENPEEL A C, et al. Conversion of lignin precursors to carbon fibers with nanoscale graphitic domains[J]. ACS Sustainable Chemistry & Engineering, 2014, 2(8): 2002-2010. |
28 | CULEBRAS M, GEANEY H, BEAUCAMP A, et al. Bio-derived carbon nanofibres from lignin as high-performance Li-ion anode materials[J]. ChemSusChem, 2019, 12(19): 4516-4521. |
29 | MA X J, SMIRNOVA A L, FONG H. Flexible lignin-derived carbon nanofiber substrates functionalized with iron (Ⅲ) oxide nanoparticles as lithium-ion battery anodes[J]. Materials Science and Engineering: B, 2019, 241: 100-104. |
30 | WANG S X, YANG L P, STUBBS L P, et al. Lignin-derived fused electrospun carbon fibrous mats as high performance anode materials for lithium ion batteries[J]. ACS Applied Materials & Interfaces, 2013, 5(23): 12275-12282. |
31 | NOWAK A P, HAGBERG J, LEIJONMARCK S, et al. Lignin-based carbon fibers for renewable and multifunctional lithium-ion battery electrodes[J]. Holzforschung, 2018, 72(2): 81-90. |
32 | TENHAEFF W E, RIOS O, MORE K, et al. Highly robust lithium ion battery anodes from lignin: An abundant, renewable, and low-cost material[J]. Advanced Functional Materials, 2014, 24(1): 86-94. |
33 | KLAPISZEWSKI Ł, SZALATY T J, KURC B, et al. Functional hybrid materials based on manganese dioxide and lignin activated by ionic liquids and their application in the production of lithium ion batteries[J]. International Journal of Molecular Sciences, 2017, 18(7): doi: 10.3390/ijms18071509. |
34 | 李常青, 杨东杰, 席跃宾, 等. 二氧化硅/木质素多孔碳复合材料的制备及作为锂离子电池负极材料的性能[J]. 高等学校化学学报, 2018, 39(12): 2725-2733. |
LI C Q, YANG D J, XI Y B, et al. Synthesis and electrochemical performance of silica/porous lignin carbon composites as anode materials for lithium-ion batteries[J]. Chemical Journal of Chinese Universities, 2018, 39(12): 2725-2733. | |
35 | HUANG S, YANG D J, ZHANG W L, et al. Dual-templated synthesis of mesoporous lignin-derived honeycomb-like porous carbon/SiO2 composites for high-performance Li-ion battery[J]. Microporous and Mesoporous Materials, 2021, 317: doi: 10.1016/j.micromeso.2021.111004. |
36 | DU L L, WU W, LUO C, et al. Lignin derived Si@C composite as a high performance anode material for lithium ion batteries[J]. Solid State Ionics, 2018, 319: 77-82. |
37 | RIOS O, MARTHA S K, MCGUIRE M A, et al. Monolithic composite electrodes comprising silicon nanoparticles embedded in lignin-derived carbon fibers for lithium-ion batteries[J]. Energy Technology, 2014, 2(9/10): 773-777. |
38 | LI Y X, LIU L, LIU X Y, et al. Extracting lignin-SiO2 composites from Si-rich biomass to prepare Si/C anode materials for lithium ions batteries[J]. Materials Chemistry and Physics, 2021, 262: doi: 10.1016/j.matchemphys.2021.124331. |
39 | 易聪华, 苏华坚, 钱勇, 等. 木质素纳米炭的制备及作为锂离子电池负极的性能研究[J]. 高等学校化学学报, 2021, 42(6): 1807-1815. |
YI C H, SU H J, QIAN Y, et al. Preparation of lignin nanocarbon and its performance as a negative electrode for lithium-ion batteries[J]. Chemical Journal of Chinese Universities, 2021, 42(6): 1807-1815. | |
40 | NAJAFI M. Application of C60, C72 and carbon nanotubes as anode for lithium-ion batteries: A DFT study[J]. Materials Chemistry and Physics, 2017, 195: 195-198. |
41 | SAGUES W J, YANG J, MONROE N, et al. A simple method for producing bio-based anode materials for lithium-ion batteries[J]. Green Chemistry, 2020, 22(20): 7093-7108. |
42 | LU G X, ZHENG J H, JIN C B, et al. Lithiated aromatic biopolymer as high-performance organic anodes for lithium-ion storage[J]. Chemical Engineering Journal, 2021, 409: doi: 10.1016/j.cej.2020.127454. |
43 | WANG S, ZHANG L, WANG A L, et al. Polymer-laden composite lignin-based electrolyte membrane for high-performance lithium batteries[J]. ACS Sustainable Chemistry & Engineering, 2018, 6(11): 14460-14469. |
44 | XIE W G, DANG Y P, WU L, et al. Experimental and molecular simulating study on promoting electrolyte-immersed mechanical properties of cellulose/lignin separator for lithium-ion battery[J]. Polymer Testing, 2020, 90: doi: 10.1016/j.polymertesting.2020.106773. |
45 | ZHAO M, WANG J, CHONG C B, et al. An electrospun lignin/polyacrylonitrile nonwoven composite separator with high porosity and thermal stability for lithium-ion batteries[J]. RSC Advances, 2015, 5(122): 101115-101120. |
46 | LIU B, HUANG Y, CAO H J, et al. A high-performance and environment-friendly gel polymer electrolyte for lithium ion battery based on composited lignin membrane[J]. Journal of Solid State Electrochemistry, 2018, 22(3): 807-816. |
47 | UDDIN M J, ALABOINA P K, ZHANG L F, et al. A low-cost, environment-friendly lignin-polyvinyl alcohol nanofiber separator using a water-based method for safer and faster lithium-ion batteries[J]. Materials Science and Engineering: B, 2017, 223: 84-90. |
48 | BARONCINI E A, STANZIONE J F. Incorporating allylated lignin-derivatives in thiol-ene gel-polymer electrolytes[J]. International Journal of Biological Macromolecules, 2018, 113: 1041-1051. |
49 | GONG S D, HUANG Y, CAO H J, et al. A green and environment-friendly gel polymer electrolyte with higher performances based on the natural matrix of lignin[J]. Journal of Power Sources, 2016, 307: 624-633. |
50 | ZHU J D, YAN C Y, ZHANG X, et al. A sustainable platform of lignin: From bioresources to materials and their applications in rechargeable batteries and supercapacitors[J]. Progress in Energy and Combustion Science, 2020, 76: doi: 10.1016/j.pecs.2019.100788. |
51 | NIRMALE T C, KALE B B, VARMA A J. A review on cellulose and lignin based binders and electrodes: Small steps towards a sustainable lithium ion battery[J]. International Journal of Biological Macromolecules, 2017, 103: 1032-1043. |
52 | LU H R, CORNELL A, ALVARADO F, et al. Lignin as a binder material for eco-friendly Li-ion batteries[J]. Materials (Basel, Switzerland), 2016, 9(3): doi: 10.3390/ma9030127. |
53 | LUO C, DU L L, WU W, et al. Novel lignin-derived water-soluble binder for micro silicon anode in lithium-ion batteries[J]. ACS Sustainable Chemistry & Engineering, 2018, 6(10): 12621-12629. |
54 | 邱学青, 熊文龙, 杨东杰, 等. 用于锂离子电池负极的木质素基水性黏结剂和基于其的电极片与锂离子电池: CN106025283A[P]. 2016-5-25. |
QIU X Q, XIONG W L, YANG D J, et al. Lignin based water-based adhesive for negative electrode of lithium-ion battery and electrode sheet and lithium-ion battery based on it: CN106025283A[P]. 2016-5-25. | |
55 | 邓永红, 罗超, 石桥, 等. 木质素基黏结剂及其制备方法和锂离子电池: CN110061239A[P]. 2019-07-26. |
DENG Y H, LUO C, SHI Q, et al. Lignin based binder, its preparation method and lithium ion battery: CN110061239A[P]. 2019-07-26. | |
56 | ZHANG Q, YU Z, DU P, et al. Carbon nanomaterials used as conductive additives in lithium ion batteries[J]. Recent Patents on Nanotechnology, 2010, 4(2): 100-110. |
57 | WU Y J, TANG R H, LI W C, et al. A high-quality aqueous graphene conductive slurry applied in anode of lithium-ion batteries[J]. Journal of Alloys and Compounds, 2020, 830: doi: 10.1016/j.jallcom.2020.154575. |
58 | CHEN T, ZHANG Q, PAN J, et al. Low-temperature treated lignin as both binder and conductive additive for silicon nanoparticle composite electrodes in lithium-ion batteries[J]. ACS Applied Materials & Interfaces, 2016, 8(47): 32341-32348. |
59 | XIONG W L, YANG D J, ZHI J, et al. Improved performance of the rechargeable hybrid aqueous battery at near full state-of-charge[J]. Electrochimica Acta, 2018, 271: 481-489. |
60 | LAI Y H, KUO Y T, LAI B Y, et al. Improving lithium-sulfur battery performance with lignin reinforced MWCNT protection layer[J]. International Journal of Energy Research, 2019, 43(11): 5803-5811. |
61 | LIU T, SUN S M, SONG W, et al. A lightweight and binder-free electrode enabled by lignin fibers@carbon-nanotubes and graphene for ultrastable lithium-sulfur batteries[J]. Journal of Materials Chemistry A, 2018, 6(46): 23486-23494. |
62 | ZHANG Z Y, YI S, WEI Y J, et al. Lignin nanoparticle-coated celgard separator for high-performance lithium-sulfur batteries[J]. Polymers, 2019, 11(12): doi: 10.3390/polym11121946. |
63 | LEI T, CHEN W, LV W, et al. Inhibiting polysulfide shuttling with a graphene composite separator for highly robust lithium-sulfur batteries[J]. Joule, 2018, 2(10): 2091-2104. |
64 | 李鹏伟, 王强宇. 新能源汽车锂离子电池胶粘剂的开发与性能研究[J]. 中国胶粘剂, 2020, 29(11): 48-51, 55. |
LI P W, WANG Q Y. Development and properties of adhesive for lithium ion battery of new energy vehicle[J]. China Adhesives, 2020, 29(11): 48-51, 55. | |
65 | 吴秀芬. 基于木质素的锂硫电池水系黏结剂的研究[D]. 哈尔滨: 哈尔滨工业大学, 2019. |
WU X F. Novel lignin based aqueous binder for lithium-sulfur batteries[D]. Harbin: Harbin Institute of Technology, 2019. |
[1] | 李海涛, 孔令丽, 张欣, 余传军, 王纪威, 徐琳. N/P设计对高镍NCM/Gr电芯性能的影响[J]. 储能科学与技术, 2022, 11(7): 2040-2045. |
[2] | 陈龙, 夏权, 任羿, 曹高萍, 邱景义, 张浩. 多物理场耦合下锂离子电池组可靠性研究现状与展望[J]. 储能科学与技术, 2022, 11(7): 2316-2323. |
[3] | 易顺民, 谢林柏, 彭力. 基于VF-DW-DFN的锂离子电池剩余寿命预测[J]. 储能科学与技术, 2022, 11(7): 2305-2315. |
[4] | 祝庆伟, 俞小莉, 吴启超, 徐一丹, 陈芬放, 黄瑞. 高能量密度锂离子电池老化半经验模型[J]. 储能科学与技术, 2022, 11(7): 2324-2331. |
[5] | 王宇作, 王瑨, 卢颖莉, 阮殿波. 孔结构对软碳负极储锂性能的影响[J]. 储能科学与技术, 2022, 11(7): 2023-2029. |
[6] | 刘显茜, 孙安梁, 田川. 基于仿生翅脉流道冷板的锂离子电池组液冷散热[J]. 储能科学与技术, 2022, 11(7): 2266-2273. |
[7] | 孔为, 金劲涛, 陆西坡, 孙洋. 对称蛇形流道锂离子电池冷却性能[J]. 储能科学与技术, 2022, 11(7): 2258-2265. |
[8] | 霍思达, 薛文东, 李新丽, 李勇. 基于CiteSpace知识图谱的锂电池复合电解质可视化分析[J]. 储能科学与技术, 2022, 11(7): 2103-2113. |
[9] | 邓健想, 赵金良, 黄成德. 高能量锂离子电池硅基负极黏结剂研究进展[J]. 储能科学与技术, 2022, 11(7): 2092-2102. |
[10] | 申晓宇, 岑官骏, 乔荣涵, 朱璟, 季洪祥, 田孟羽, 金周, 闫勇, 武怿达, 詹元杰, 俞海龙, 贲留斌, 刘燕燕, 黄学杰. 锂电池百篇论文点评(2022.4.1—2022.5.31)[J]. 储能科学与技术, 2022, 11(7): 2007-2022. |
[11] | 张言, 王海, 刘朝孟, 张德柳, 王佳东, 李建中, 高宣雯, 骆文彬. 锂离子电池富镍三元正极材料NCM的研究进展[J]. 储能科学与技术, 2022, 11(6): 1693-1705. |
[12] | 欧宇, 侯文会, 刘凯. 锂离子电池中的智能安全电解液研究进展[J]. 储能科学与技术, 2022, 11(6): 1772-1787. |
[13] | 韩俊伟, 肖菁, 陶莹, 孔德斌, 吕伟, 杨全红. 致密储能:基于石墨烯的方法学和应用实例[J]. 储能科学与技术, 2022, 11(6): 1865-1873. |
[14] | 辛耀达, 李娜, 杨乐, 宋维力, 孙磊, 陈浩森, 方岱宁. 锂离子电池植入传感技术[J]. 储能科学与技术, 2022, 11(6): 1834-1846. |
[15] | 燕乔一, 吴锋, 陈人杰, 李丽. 锂离子电池负极石墨回收处理及资源循环[J]. 储能科学与技术, 2022, 11(6): 1760-1771. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||