1 |
YANG Z G, ZHANG J L, KINTNER-MEYER M C W, et al. Electrochemical energy storage for green grid[J]. Chemical Reviews, 2011, 111(5): 3577-3613.
|
2 |
张步涵, 曾杰, 毛承雄, 等. 电池储能系统在改善并网风电场电能质量和稳定性中的应用[J]. 电网技术, 2006, 30(15): 54-58.
|
|
ZHANG B H, ZENG J, MAO C X, et al. Improvement of power quality and stability of wind farms connected to power grid by battery energy storage system[J]. Power System Technology, 2006, 30(15): 54-58.
|
3 |
韩涛, 卢继平, 乔梁, 等. 大型并网风电场储能容量优化方案[J]. 电网技术, 2010, 34(1): 169-173.
|
|
HAN T, LU J P, QIAO L, et al. Optimized scheme of energy-storage capacity for grid-connected large-scale wind farm[J]. Power System Technology, 2010, 34(1): 169-173.
|
4 |
于芃, 周玮, 孙辉, 等. 用于风电功率平抑的混合储能系统及其控制系统设计[J]. 中国电机工程学报, 2011, 31(17): 127-133.
|
|
YU P, ZHOU W, SUN H, et al. Hybrid energy storage system and control system design for wind power balancing[J]. Proceedings of the CSEE, 2011, 31(17): 127-133.
|
5 |
李先锋, 张洪章, 郑琼, 等. 能源革命中的电化学储能技术[J]. 中国科学院院刊, 2019, 34(4): 443-449.
|
|
LI X F, ZHANG H Z, ZHENG Q, et al. Electrochemical energy storage technology in energy revolution[J]. Bulletin of Chinese Academy of Sciences, 2019, 34(4): 443-449.
|
6 |
缪平, 姚祯, LEMMON John, 等.电池储能技术研究进展及展望[J]. 储能科学与技术, 2020, 9(3): 670-678.
|
|
MIAO P, YAO Z, LEMMON J, et al. Current situations and prospects of energy storage batteries[J]. Energy Storage Science and Technology, 2020, 9(3): 670-678.
|
7 |
李泓, 吕迎春. 电化学储能基本问题综述[J]. 电化学, 2015, 21(5): 412-424.
|
|
LI H, LYU Y C. A review on electrochemical energy storage[J]. Journal of Electrochemistry, 2015, 21(5): 412-424.
|
8 |
许守平, 李相俊, 惠东. 大规模电化学储能系统发展现状及示范应用综述[J]. 电力建设, 2013, 34(7): 73-80.
|
|
XU S P, LI X J, HUI D. A review of development and demonstration application of large-scale electrochemical energy storage[J]. Electric Power Construction, 2013, 34(7): 73-80.
|
9 |
贾志军, 宋士强, 王保国. 液流电池储能技术研究现状与展望[J]. 储能科学与技术, 2012, 1(1): 50-57.
|
|
JIA Z J, SONG S Q, WANG B G. Acritical review on redox flow batteries for electrical energy storage applications[J]. Energy Storage Science and Technology, 2012, 1(1): 50-57.
|
10 |
张华民, 王晓丽. 全钒液流电池技术最新研究进展[J]. 储能科学与技术, 2013, 2(3): 281-288.
|
|
ZHANG H M, WANG X L. Recent progress on vanadium flow battery technologies[J]. Energy Storage Science and Technology, 2013, 2(3): 281-288.
|
11 |
朱顺泉, 孙娓荣, 汪钱, 等. 大规模蓄电储能全钒液流电池研究进展[J]. 化工进展, 2007, 26(2): 207-211.
|
|
ZHU S Q, SUN W R, WANG Q, et al. Review of R & D status of vanadium redox battery[J]. Chemical Industry and Engineering Progress, 2007, 26(2): 207-211.
|
12 |
谢聪鑫, 郑琼, 李先锋, 等. 液流电池技术的最新进展[J]. 储能科学与技术, 2017, 6(5): 1050-1057.
|
|
XIE C X, ZHENG Q, LI X F, et al. Current advances in the flow battery technology[J]. Energy Storage Science and Technology, 2017, 6(5): 1050-1057.
|
13 |
WEBER A Z, MENCH M M, MEYERS J P, et al. Redox flow batteries: A review[J]. Journal of Applied Electrochemistry, 2011, 41(10): 1137-1164.
|
14 |
MCBREEN J. Rechargeable zinc batteries[J]. Journal of Electroanalytical Chemistry and Interfacial Electrochemistry, 1984, 168(1/2): 415-432.
|
15 |
KHOR A, LEUNG P, MOHAMED M R, et al. Review of zinc-based hybrid flow batteries: From fundamentals to applications[J]. Materials Today Energy, 2018, 8: 80-108.
|
16 |
YUAN Z, YIN Y, XIE C, et al. Advanced materials for zinc-based flow battery: Development and challenge[J]. Advanced Materials, 2019, 31(50): doi: 10.1002/adma.201902025.
|
17 |
SKYLLAS-KAZACOS M, MENICTAS C, LIM T. Redox flow batteries for medium-to large-scale energy storage[M]. Electricity Transmission, Distribution and Storage Systems. Amsterdam: Elsevier, 2013: 398-441.
|
18 |
YUAN Z Z, DUAN Y Q, LIU T, et al. Toward a low-cost alkaline zinc-iron flow battery with a polybenzimidazole custom membrane for stationary energy storage[J]. iScience, 2018, 3: 40-49.
|
19 |
SELVERSTON S, SAVINELL R F, WAINRIGHT J S. Zinc-iron flow batteries with common electrolyte[J]. Journal of the Electrochemical Society, 2017, 164(6): A1069-A1075.
|
20 |
XIE C, DUAN Y, XU W, et al. A low-cost neutral zinc-iron flow battery with high energy density for stationary energy storage[J]. Angewandte Chemie, 2017, 56(47): 14953-14957.
|
21 |
ADAMS G B. Electrically rechargeable battery: US4180623[P]. 1979-12-25.
|
22 |
LI Q F, HE R H, JENSEN J O, et al. Approaches and recent development of polymer electrolyte membranes for fuel cells operating above 100 ℃[J]. Chemistry of Materials, 2003, 15(26): 4896-4915.
|
23 |
CHEN Z Q, YU W T, LIU Y F, et al. Mathematical modeling and numerical analysis of alkaline zinc-iron flow batteries for energy storage applications[J]. Chemical Engineering Journal, 2021, 405: doi: 10.1016/j.cej.2020.126684.
|
24 |
XIE Z P, SU Q, SHI A H, et al. High performance of zinc-ferrum redox flow battery with Ac-/HAc buffer solution[J]. Journal of Energy Chemistry, 2016, 25(3): 495-499.
|
25 |
GONG K, MA X Y, CONFORTI K M, et al. A zinc-iron redox-flow battery under $100 per kW h of system capital cost[J]. Energy & Environmental Science, 2015, 8(10): 2941-2945.
|
26 |
PEI A, ZHENG G, SHI F, et al. Nanoscale nucleation and growth of electrodeposited lithium metal[J]. Nano Letters, 2017, 17(2): 1132-1139.
|
27 |
GUO L, GUO H, HUANG H, et al. Inhibition of zinc dendrites in zinc-based flow batteries[J]. Frontiers in Chemistry, 2020, 8: 557.
|
28 |
胡卫华, 喻敬贤, 杨汉西, 等. 二维锌枝晶生长行为研究[J]. 武汉大学学报(理学版), 2004, 50(4): 431-435.
|
|
HU W H, YU J X, YANG H X, et al. Dendrite growth of zinc in quasi-two-dimensional electrodeposition[J]. Wuhan University Journal (Natural Science Edition), 2004, 50(4): 431-435.
|
29 |
BANIK S J, AKOLKAR R. Suppressing dendritic growth during alkaline zinc electrodeposition using polyethylenimine additive[J]. Electrochimica Acta, 2015, 179: 475-481.
|
30 |
LI B, NIE Z, VIJAYAKUMAR M, et al. Ambipolar zinc-polyiodide electrolyte for a high-energy density aqueous redox flow battery[J]. Nature Communications, 2015, 6: doi: 10.1038/ncomms7303.
|
31 |
WANG J M, ZHANG L, ZHANG C, et al. Effects of bismuth ion and tetrabutylammonium bromide on the dendritic growth of zinc in alkaline zincate solutions[J]. Journal of Power Sources, 2001, 102(1/2): 139-143.
|
32 |
WANG K L, PEI P C, MA Z, et al. Morphology control of zinc regeneration for zinc-air fuel cell and battery[J]. Journal of Power Sources, 2014, 271: 65-75.
|
33 |
YUAN Z, LIU X, XU W, et al. Negatively charged nanoporous membrane for a dendrite-free alkaline zinc-based flow battery with long cycle life[J]. Nature Communications, 2018, 9(1): doi: 10.1038/s41467-018-06209-x.
|
34 |
HIGASHI S, LEE S W, LEE J S, et al. Avoiding short circuits from zinc metal dendrites in anode by backside-plating configuration[J]. Nature Communications, 2016, 7: doi: 10.1038/ncomms11801.
|
35 |
杨朝霞, 娄景媛, 李雪菁, 等. 锌镍单液流电池发展现状[J]. 储能科学与技术, 2020, 9(6): 1678-1690.
|
|
YANG Z X, LOU J Y, LI X J, et al. Status and development of the zinc-nickel single flow battery[J]. Energy Storage Science and Technology, 2020, 9(6): 1678-1690.
|