1 |
LU L G, HAN X B, LI J Q, et al. A review on the key issues for lithium-ion battery management in electric vehicles[J]. Journal of Power Sources, 2013, 226: 272-288.
|
2 |
RAHIMI-EICHI H, BARONTI F, CHOW M Y. Online adaptive parameter identification and state-of-charge coestimation for lithium-polymer battery cells[J]. IEEE Transactions on Industrial Electronics, 2014, 61(4): 2053-2061.
|
3 |
缪平, 姚祯, LEMMON John, 等. 电池储能技术研究进展及展望[J]. 储能科学与技术, 2020, 9(3):670-678.
|
|
MIAO P, YAO Z, LEMMON J, et al. Current situations and prospects of energy storage batteries[J]. Energy Storage Science and Technology, 2020, 9(3):670-678.
|
4 |
张志超, 郑莉莉, 杜光超, 等. 锂离子电池充放电过程中产热特性研究综述[J]. 储能科学与技术, 2019, 8(S1): 31-37.
|
|
ZHANG Z C, ZHENG L L, DU G C, et al. Review of research on heat generation characteristics during charging and discharging of lithium ion batteries[J]. Energy Storage Science and Technology, 2019, 8(S1): 31-37.
|
5 |
徐蒙, 张竹茜, 贾力, 等. 圆柱形锂离子动力电池放电过程电化学与传热特性研究[J]. 中国电机工程学报, 2013, 33(32): 54-61, 5.
|
|
XU M, ZHANG Z Q, JIA L, et al. Study on electrochemical and heat transfer characteristics of cylindrical lithium-ion power battery during discharge cycle[J]. Proceedings of the CSEE, 2013, 33(32): 54-61, 5.
|
6 |
LI J, CHENG Y, AI L H, et al. 3D simulation on the internal distributed properties of lithium-ion battery with planar tabbed configuration[J]. Journal of Power Sources, 2015, 293: 993-1005.
|
7 |
LIN X F, PEREZ H E, MOHAN S, et al. A lumped-parameter electro-thermal model for cylindrical batteries[J]. Journal of Power Sources, 2014, 257: 1-11.
|
8 |
陈实, 方凯正, 穆道斌, 等. 神经网络模型在锂离子电池表面温度预测中的应用研究[J]. 北京理工大学学报, 2013, 33(4): 421-424.
|
|
CHEN S, FANG K Z, MU D B, et al. Application of neural network model to predicting surface temperature of lithium-ion battery[J]. Transactions of Beijing Institute of Technology, 2013, 33(4): 421-424.
|
9 |
宋明超, 李国春, 王丽梅, 等. 基于电化学阻抗谱的锂离子电池内部温度估算研究[J]. 农业装备与车辆工程, 2020, 58(5): 56-61.
|
|
SONG M C, LI G C, WANG L M, et al. Estimation of internal temperature of lithium-ion battery based on electrochemical impedance spectroscopy[J]. Agricultural Equipment & Vehicle Engineering, 2020, 58(5): 56-61.
|
10 |
PARK H M, CHO D H. The use of the Karhunen-Loève decomposition for the modeling of distributed parameter systems[J]. Chemical Engineering Science, 1996, 51(1): 81-98.
|
11 |
CHRISTOFIDES P D, CHOW J. Nonlinear and robust control of PDE systems: Methods and applications to transport-reaction processes[J]. Applied Mechanics Reviews, 2002, 55(2): B29-B30.
|
12 |
QI C K, LI H X, ZHANG X X, et al. Time/Space-separation-based SVM modeling for nonlinear distributed parameter processes[J]. Industrial & Engineering Chemistry Research, 2011, 50(1): 332-341.
|
13 |
LU X J, ZOU W, HUANG M H. An adaptive modeling method for time-varying distributed parameter processes with curing process applications[J]. Nonlinear Dynamics, 2015, 82(1/2): 865-876.
|
14 |
LIU Z, LI H X. Extreme learning machine based spatiotemporal modeling of lithium-ion battery thermal dynamics[J]. Journal of Power Sources, 2015, 277: 228-238.
|
15 |
WANG M L, LI H X. Real-time estimation of temperature distribution for cylindrical lithium-ion batteries under boundary cooling[J]. IEEE Transactions on Industrial Electronics, 2017, 64(3): 2316-2324.
|
16 |
BALACHANDAR S. Turbulence, coherent structures, dynamical systems and symmetry[J]. AIAA Journal, 1998, 36(3): 496.
|
17 |
ROWEIS S T, SAUL L K. Nonlinear dimensionality reduction by locally linear embedding[J]. Science, 2000, 290(5500): 2323-2326.
|
18 |
PRABHAKAR S K, RAJAGURU H. Expectation maximization based PCA and hessian LLE with suitable post classifiers for epilepsy classification from EEG signals[C]//Proceedings of the Eighth International Conference on Soft Computing and Pattern Recognition (SoCPaR 2016), 2018: 364-374.
|
19 |
BELKIN M, NIYOGI P. Laplacian eigenmaps and spectral techniques for embedding and clustering[M/OL]//Advances in Neural Information Processing Systems 14. The MIT Press, 2002: https://doi.org/10.7551/mitpress/1120.003.0080 .
|
20 |
KIM U S, SHIN C B, KIM C S. Modeling for the scale-up of a lithium-ion polymer battery[J]. Journal of Power Sources, 2009, 189(1): 841-846.
|
21 |
WU B, YUFIT V, MARINESCU M, et al. Coupled thermal-electrochemical modelling of uneven heat generation in lithium-ion battery packs[J]. Journal of Power Sources, 2013, 243: 544-554.
|
22 |
BELKIN M, NIYOGI P. Laplacian eigenmaps for dimensionality reduction and data representation[J]. Neural Computation, 2003, 15(6): 1373-1396.
|
23 |
王秀峰, 卢桂章. 系统建模与辨识[M]. 北京: 电子工业出版社, 2004.
|
|
WANG X F, LU G Z. System modeling and identificatio [M]. Beijing: Publishing House of Electronics Industry, 2004.
|
24 |
HUANG G B, ZHU Q Y, SIEW C K. Extreme learning machine: Theory and applications[J]. Neurocomputing, 2006, 70(1/2/3): 489-501.
|
25 |
HUANG G B, WANG D H, LAN Y. Extreme learning machines: A survey[J]. International Journal of Machine Learning and Cybernetics, 2011, 2(2): 107-122.
|
26 |
LU X J, ZHOU C, HUANG M H, et al. Regularized online sequential extreme learning machine with adaptive regulation factor for time-varying nonlinear system[J]. Neurocomputing, 2016, 174: 617-626.
|
27 |
HUANG G B, ZHOU H M, DING X J, et al. Extreme learning machine for regression and multiclass classification[J]. IEEE Transactions on Systems, Man, and Cybernetics Part B(Cybernetics), 2012, 42(2): 513-529.
|