1 |
SUN F C, XIONG R, HE H W. A systematic state-of-charge estimation framework for multi-cell battery pack in electric vehicles using bias correction technique[J]. Applied Energy, 2016, 162: 1399-1409.
|
2 |
SAW L H, POON H M, THIAM H S, et al. Novel thermal management system using mist cooling for lithium-ion battery packs[J]. Applied Energy, 2018, 223: 146-158.
|
3 |
JI Y, ZHANG Y C, WANG C Y. Li-ion cell operation at low temperatures[J]. Journal of the Electrochemical Society, 2013, 160(4): A636-A649.
|
4 |
LI J, YUAN C F, GUO Z H, et al. Limiting factors for low-temperature performance of electrolytes in LiFePO4/Li and graphite/Li half cells[J]. Electrochimica Acta, 2012, 59: 69-74.
|
5 |
ZHANG S S, XU K, JOW T R. Low temperature performance of graphite electrode in Li-ion cells[J]. Electrochimica Acta, 2002, 48(3): 241-246.
|
6 |
ZHANG S S, XU K, JOW T R. A new approach toward improved low temperature performance of Li-ion battery[J]. Electrochemistry Communications, 2002, 4(11): 928-932.
|
7 |
FAN J, TAN S. Studies on charging lithium-ion cells at low temperatures[J]. Journal of the Electrochemical Society, 2006, 153(6): A1081.
|
8 |
NAGASUBRAMANIAN G. Electrical characteristics of 18650 Li-ion cells at low temperatures[J]. Journal of Applied Electrochemistry, 2001, 31: 99-104.
|
9 |
SUN B X, JIANG J C, ZHENG F D, et al. Practical state of health estimation of power batteries based on Delphi method and grey relational grade analysis[J]. Journal of Power Sources, 2015, 282: 146-157.
|
10 |
CHO H M, CHOI W S, GO J Y, et al. A study on time-dependent low temperature power performance of a lithium-ion battery[J]. Journal of Power Sources, 2012, 198: 273-280.
|
11 |
SHANG Y L, ZHU C, FU Y H, et al. An integrated heater equalizer for lithium-ion batteries of electric vehicles[J]. IEEE Transactions on Industrial Electronics, 2019, 66(6): 4398-4405.
|
12 |
GHADBEIGI L, DAY B, LUNDGREN K, et al. Cold temperature performance of phase change material based battery thermal management systems[J]. Energy Reports, 2018, 4: 303-307.
|
13 |
HUANG D Y, CHEN Z Q, ZHOU S Y. Model prediction-based battery-powered heating method for series-connected lithium-ion battery pack working at extremely cold temperatures[J]. Energy, 2021, 216: doi:10.1016/j.energy.2020.119236.
|
14 |
YANG X G, GE S, WU N, et al. All-climate battery technology for electric vehicles: Inching closer to the mainstream adoption of automated driving[J]. IEEE Electrification Magazine, 2019, 7(1): 12-21.
|
15 |
WANG C Y, ZHANG G S, GE S H, et al. Lithium-ion battery structure that self-heats at low temperatures[J]. Nature, 2016, 529(7587): 515-518.
|
16 |
RUAN H J, JIANG J C, SUN B X, et al. A rapid low-temperature internal heating strategy with optimal frequency based on constant polarization voltage for lithium-ion batteries[J]. Applied Energy, 2016, 177: 771-782.
|
17 |
MOHAN S, SIEGEL J B, STEFANOPOULOU A G, et al. An energy-optimal warm-up strategy for Li-ion batteries and its approximations[J]. IEEE Transactions on Control Systems Technology, 2019, 27(3): 1165-1180.
|
18 |
GUO S S, XIONG R, SHEN W X, et al. Aging investigation of an echelon internal heating method on a three-electrode lithium ion cell at low temperatures[J]. Journal of Energy Storage, 2019, 25: doi:10.1016/j.est.2019.100878.
|
19 |
JIANG J C, RUAN H J, SUN B X, et al. A low-temperature internal heating strategy without lifetime reduction for large-size automotive lithium-ion battery pack[J]. Applied Energy, 2018, 230: 257-266.
|
20 |
XIE Y, LI W, YANG Y, et al. A novel resistance-based thermal model for lithium-ion batteries[J]. International Journal of Energy Research, 2018, 42(14): 4481-4498
|
21 |
李夔宁, 何铖, 谢翌, 等. 大倍率放电工况下48 V软包电池包的热管理[J]. 储能科学与技术, 2021, 10(2): 679-688.
|
|
LI K N, HE C, XIE Y, et al. Thermal management of a 48 V pouch lithium-ion battery pack based on high rate discharge condition[J]. Energy Storage Science and Technology, 2021, 10(2): 679-688.
|