储能科学与技术 ›› 2022, Vol. 11 ›› Issue (10): 3191-3199.doi: 10.19799/j.cnki.2095-4239.2022.0205

• 储能系统与工程 • 上一篇    下一篇

锂离子电池低温复合加热策略及优化

李夔宁1,2(), 王靖鸿1,2, 谢翌3, 刘彬1,2, 刘江岩1,2, 刘召婷1,2   

  1. 1.重庆大学低品位能源利用技术及系统教育部重点实验室
    2.重庆大学能源与动力工程学院
    3.重庆大学机械与运载工程学院,重庆 400044
  • 收稿日期:2022-04-15 修回日期:2022-05-10 出版日期:2022-10-05 发布日期:2022-10-10
  • 通讯作者: 李夔宁 E-mail:leekn@cqu.edu.cn
  • 作者简介:李夔宁(1970—),男,博士,教授,博士生导师,从事制冷与空调新技术、汽车热系统/热环境控制技术的研究,E-mail:leekn@cqu.edu.cn
  • 基金资助:
    广东省重点领域研发计划(2020B0909030001);国家自然基金面上项目(52072052);国家自然科学基金重点支持项目(U20A20310)

Low-temperature compound-heating strategy and optimization of lithium-ion battery

Kuining LI1,2(), Jinghong WANG1,2, Yi XIE3, Bin LIU1,2, Jiangyan LIU1,2, Zhaoting LIU1,2   

  1. 1.Key Laboratory of Low-grade Energy Utilization Technologies and Systems, Ministry of Education of China, Chongqing University
    2.School of Energy and Power Engineering, Chongqing University
    3.College of Mechanical and Vehicle Engineering, Chongqing University, Chongqing 400044, China
  • Received:2022-04-15 Revised:2022-05-10 Online:2022-10-05 Published:2022-10-10
  • Contact: Kuining LI E-mail:leekn@cqu.edu.cn

摘要:

电动汽车因为节能环保和能量转化效率高等特性在近年来发展迅速。在低温下,作为动力来源的锂离子电池的放电功率和容量等性能严重衰减,影响着电动汽车在北方极寒地区的发展和普及。因此,如何在低温下对锂离子电池进行可靠、高效、安全地低温加热显得尤为重要。以三元锂方块电池为研究对象,通过测试电池在不同工况下的低温特性,得出了电池电特性和热特性参数。建立单体电池低温电热耦合模型,通过神经网络方法拟合实验数据,得到电池低温加热仿真模型。通过电池不同工况下的温升实验,验证了仿真模型的精度。本文提出了电池多段恒流复合加热方法,建立了电池老化、加热时间、容量收益的多目标非线性优化模型,揭示了电池老化、加热时间和容量收益之间的关系,得到了评价加权权重矩阵。利用非支配排序遗传算法-?Ⅱ(NSGA-Ⅱ)和优劣解距离法(TOPSIS),得到单体电池平衡加热策略,探究了电池不同初始状态对优化目标的影响规律。根据电池的不同初始状态以平衡加热策略为基础建立了单体电池加热电流数据库。电池初始温度为-20 ℃时,加热到10 ℃,所需加热时间为253 s,容量收益为4.72 Ah,电池老化为0.482?,峰值功率收益为1104 W。

关键词: 锂离子电池, 低温电热耦合模型, 复合加热方法, 加热策略

Abstract:

Recently, electric vehicles have developed due to their energy-saving, environmental protection, and high energy-conversion efficiency. At low temperatures, the performance of lithium-ion batteries, such as discharge power and capacity, is attenuated. This has affected the development and popularization of electric vehicles in the cold areas of north China. Therefore, it is important to understand how lithium-ion batteries reliably, efficiently, and safely heat at low temperatures. The electrical and thermal characteristics of the battery are obtained using the ternary lithium prismatic battery as the research objectives by testing the low-temperature characteristics of the battery under different working conditions. The cell electrothermal-coupling model is established, and a low-temperature heating-simulation model of the battery is obtained by fitting experimental data with the neural network method. The accuracy of the simulation model is verified using the temperature-rise experiments for the battery under different working conditions. A multistage constant-current composite-heating method is proposed, and a multiobjective nonlinear optimization model of battery aging, heating time, and capacity gain is established. The relationship between battery aging, heating time, and capacity gain is revealed, and the evaluation weighting matrix is obtained. The balanced heating strategy of the cell is obtained using the nondominated sorting genetic algorithm-?Ⅱ(NSGA-?Ⅱ) and technique for order preference by similarity to ideal solution (TOPSIS), and the effect of different initial states of the battery on the optimization objective is explored. According to the different initial states of the battery, the heating-current database of the cell is established based on the balanced heating strategy. When the initial temperature of the battery is -20 ℃, the heating time to 10 ℃ is 253 s, the capacity gain is 4.72 Ah, the battery aging is 0.482?, and the peak power gain is 1104 W.

Key words: lithium-ion battery, low-temperature electrothermal coupling model, composite heating method, heating strategy

中图分类号: