1 |
GE M F, LIU Y B, JIANG X X, et al. A review on state of health estimations and remaining useful life prognostics of lithium-ion batteries[J]. Measurement, 2021, 174: 1045-1057.
|
2 |
梁新成, 张勉, 黄国钧. 基于BMS的锂离子电池建模方法综述[J]. 储能科学与技术, 2020, 9(6): 1933-1939.
|
|
LIANG X C, ZHANG M, HUANG G J. Review on lithium-ion battery modeling methods based on BMS[J]. Energy Storage Science and Technology, 2020, 9(6): 1933-1939.
|
3 |
DUFFNER F, WENTKER M, GREENWOOD M, et al. Battery cost modeling: A review and directions for future research[J]. Renewable and Sustainable Energy Reviews, 2020, 127: doi: 10.1016/j.rser.2020.109872.
|
4 |
肖瑶. 锂离子电池SOC估计和循环寿命预测方法研究[D]. 成都: 电子科技大学, 2020.
|
|
XIAO Y. Research on soc estimation and cycle life prediction methods for lithium ion battery[D]. Chengdu: University of Electronic Science and Technology of China, 2020.
|
5 |
XIONG R, ZHANG Y Z, WANG J, et al. Lithium-ion battery health prognosis based on a real battery management system used in electric vehicles[J]. IEEE Transactions on Vehicular Technology, 2019, 68(5): 4110-4121.
|
6 |
WANG S Q, GUO D X, HAN X B, et al. Impact of battery degradation models on energy management of a grid-connected DC microgrid[J]. Energy, 2020, 207: doi: 10.1016/j.energy.2020. 118228.
|
7 |
陈翌, 白云飞, 何瑛. 数据驱动的锂电池健康状态估算方法比较[J]. 储能科学与技术, 2019, 8(6): 1204-1210.
|
|
CHEN Y, BAI Y F, HE Y. Comparison of data-driven lithium battery state of health estimation methods[J]. Energy Storage Science and Technology, 2019, 8(6): 1204-1210.
|
8 |
朱奕楠, 吕桃林, 赵芝芸, 等. 基于并行卡尔曼滤波器的锂离子电池荷电状态估计[J]. 储能科学与技术, 2021, 10(6): 2352-2362.
|
|
ZHU Y N, LÜ T L, ZHAO Z Y, et al. State of charge estimation of lithium ion battery based on parallel Kalman filter[J]. Energy Storage Science and Technology, 2021, 10(6): 2352-2362.
|
9 |
任璞, 王顺利, 何明芳, 等. 基于内阻增加和容量衰减双重标定的锂电池健康状态评估[J]. 储能科学与技术, 2021, 10(2): 738-743.
|
|
REN P, WANG S L, HE M F, et al. State of health estimation of Li-ion battery based on dual calibration of internal resistance increasing and capacity fading[J]. Energy Storage Science and Technology, 2021, 10(2): 738-743.
|
10 |
TIAN J Q, XU R L, WANG Y J, et al. Capacity attenuation mechanism modeling and health assessment of lithium-ion batteries[J]. Energy, 2021, 221: doi: 10.1016/j.energy.2020.119682.
|
11 |
ŠERUGA D, GOSAR A, SWEENEY C A, et al. Continuous modelling of cyclic ageing for lithium-ion batteries[J]. Energy, 2021, 215: doi: 10.1016/j.energy.2020.119079.
|
12 |
易灵芝, 张宗光, 范朝冬, 等. 基于EEMD-GSGRU的锂电池寿命预测[J]. 储能科学与技术, 2020, 9(5): 1566-1573.
|
|
YI L Z, ZHANG Z G, FAN C D, et al. Life prediction of lithium battery based on EEMD-GSGRU[J]. Energy Storage Science and Technology, 2020, 9(5): 1566-1573.
|
13 |
陈峥, 李磊磊, 舒星, 等. 基于特征处理与径向基神经网络的锂电池剩余容量估算方法[J]. 储能科学与技术, 2021, 10(1): 261-270.
|
|
CHEN Z, LI L L, SHU X, et al. Efficient remaining capacity estimation method for LIB based on feature processing and the RBF neural network[J]. Energy Storage Science and Technology, 2021, 10(1): 261-270.
|
14 |
王英楷,张红,王星辉.基于1DCNN-LSTM的锂离子电池SOH预测[J].储能科学与技术, 2022, 11(1): 240-245.
|
|
WANG Y K, ZHANG H, WANG X H. Hybrid 1DCNN-LSTM model for predicting lithium ion battery state of health[J]. Energy Storage Science and Technology, 2022, 11(1): 240-245.
|
15 |
易顺民, 谢林柏, 彭力. 基于VF-DW-DFN的锂离子电池剩余寿命预测[J]. 储能科学与技术, 2022, 11(7): 2305-2315.
|
|
YI S M, XIE L B, PENG L. Remaining useful life prediction of lithium-ion batteries based on VF-DW-DFN[J]. Energy Storage Science and Technology, 2022, 11(7): 2305-2315.
|
16 |
李练兵, 李思佳, 李洁, 等. 基于差分电压和Elman神经网络的锂离子电池RUL预测方法[J]. 储能科学与技术, 2021, 10(6): 2373-2384.
|
|
LI L B, LI S J, LI J, et al. RUL prediction of lithium-ion battery based on differential voltage and Elman neural network[J]. Energy Storage Science and Technology, 2021, 10(6): 2373-2384.
|
17 |
SEVERSON K A, ATTIA P M, JIN N, et al. Data-driven prediction of battery cycle life before capacity degradation[J]. Nature Energy, 2019, 4(5): 383-391.
|
18 |
LIU C L, LI Q, WANG K. State-of-charge estimation and remaining useful life prediction of supercapacitors[J]. Renewable and Sustainable Energy Reviews, 2021, 150: doi: 10.1016/j.rser.2021.111408.
|
19 |
FERMÍN-CUETO P, MCTURK E, ALLERHAND M, et al. Identification and machine learning prediction of knee-point and knee-onset in capacity degradation curves of lithium-ion cells[J]. Energy and AI, 2020, 1: doi: 10.1016/j.egyai.2020.100006.
|
20 |
HU X S, CHE Y H, LIN X K, et al. Battery health prediction using fusion-based feature selection and machine learning[J]. IEEE Transactions on Transportation Electrification, 2021, 7(2): 382-398.
|
21 |
CHEN Z, XUE Q, WU Y T, et al. Capacity prediction and validation of lithium-ion batteries based on long short-term memory recurrent neural network[J]. IEEE Access, 2020, 8: 172783-172798.
|
22 |
YIN A J, TAN Z B, TAN J. Life prediction of battery using a neural Gaussian process with early discharge characteristics[J]. Sensors (Basel, Switzerland), 2021, 21(4): 1087.
|
23 |
WANG J W, DENG Z W, PENG K L, et al. Early prognostics of lithium-ion battery pack health[J]. Sustainability, 2022, 14(4): 2313.
|
24 |
CHEN T Q, GUESTRIN C. XGBoost: A scalable tree boosting system[C]//KDD '16: Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. 2016: 785-794.
|
25 |
MIRJALILI S, LEWIS A. The whale optimization algorithm[J]. Advances in Engineering Software, 2016, 95: 51-67.
|