1 |
LOGAN E, TONITA E, GERING K, et al. A critical evaluation of the advanced electrolyte model[J]. Journal of the Electrochemical Society, 2018, 165(14): doi: 10.1149/2.0471814jes.
|
2 |
陈仕谋, 秦虎, 刘敏. 锂离子电池电解液标准解读[J]. 储能科学与技术, 2018, 7(6): 1253-1260.
|
|
CHEN S M, QIN H, LIU M. Studies on the standard of lithium ion battery electrolyte[J]. Energy Storage Science and Technology, 2018, 7(6): 1253-1260.
|
3 |
胡华坤, 李新丽, 薛文东, 等. 基于CiteSpace的锂离子电池用低温电解液知识图谱分析[J]. 储能科学与技术, 2022, 11(1): 379-396.
|
|
HU H K, LI X L, XUE W D, et al. Knowledge map analysis of a low-temperature electrolyte for lithium-ion battery based on CiteSpace[J]. Energy Storage Science and Technology, 2022, 11(1): 379-396.
|
4 |
史周华. 析因设计的SAS实现[J]. 数理医药学杂志, 2005, 18(6): 604-605.
|
|
SHI Z H. Procedures of SAS based on factorial design[J]. Journal of Mathematical Medicine, 2005, 18(6):604-605.
|
5 |
胡纯严, 胡良平. 如何正确运用析因设计——怎样在药物应用与监测研究中正确运用统计学(五)[J]. 中国药物应用与监测, 2008, 5(5): 44-47.
|
6 |
MYERS R H, MONTGOMERY D C, VINING G G, et al. Response surface methodology: A retrospective and literature survey[J]. Journal of Quality Technology, 2004, 36(1): 53-77.
|
7 |
LI M X, LIU F X, WANG X W, et al. Optimization of flotation process of zinc oxide ore by response surface methodology[C]//Proceedings of the 2015 International Conference on Materials Engineering and Information Technology Applications. August 30-31, 2015. Guilin, China. Paris, France: Atlantis Press, 2015: 1012-1016.
|
8 |
曾凤章, 赵霞. 田口方法及其标准化设计[J]. 机械工业标准化与质量, 2003(11): 7-9.
|
9 |
程敬丽, 郑敏, 楼建晴. 常见的试验优化设计方法对比[J]. 实验室研究与探索, 2012, 31(7): 7-11.
|
|
CHENG J L, ZHENG M, LOU J Q. Comparison of several common optimal experimental design methods[J]. Research and Exploration in Laboratory, 2012, 31(7): 7-11.
|
10 |
刘桂宾. 超饱和设计的构造及其数据分析[J]. 天津农学院学报, 2007, 14(3): 33-35, 37.
|
|
LIU G B. Construction and analysis of supersatured design[J]. Journal of Tianjin Agricultural University, 2007, 14(3): 33-35, 37.
|
11 |
陈洁. 最优超饱和设计与正交设计的构造[D]. 天津: 南开大学, 2010.
|
|
CHEN J. Construction of optimal supersaturated designs and orthogonal designs[D]. Tianjin: Nankai University, 2010.
|
12 |
MOLDES A, CENDÓN Y, BARRAL M T. Evaluation of municipal solid waste compost as a plant growing media component, by applying mixture design[J]. Bioresource Technology, 2007, 98(16): 3069-3075.
|
13 |
CHEN L C, HUANG C M, HSIAO M C, et al. Mixture design optimization of the composition of S, C, SnO2-codoped TiO2 for degradation of phenol under visible light[J]. Chemical Engineering Journal, 2010, 165(2): 482-489.
|
14 |
韩云飞, 谢佳, 蔡涛, 等. 结合高斯过程回归与特征选择的锂离子电池容量估计方法[J]. 储能科学与技术, 2021, 10(4): 1432-1438.
|
|
HAN Y F, XIE J, CAI T, et al. Capacity estimation of lithium-ion batteries based on Gaussian process regression and feature selection[J]. Energy Storage Science and Technology, 2021, 10(4): 1432-1438.
|
15 |
魏孟, 李嘉波, 叶敏, 等. 基于高斯混合回归的锂离子电池SOC估计[J]. 储能科学与技术, 2020, 9(3): 958-963.
|
|
WEI M, LI J B, YE M, et al. SOC estimation of Li-ion battery based on Gaussian mixture regression[J]. Energy Storage Science and Technology, 2020, 9(3): 958-963.
|
16 |
李嘉波, 魏孟, 叶敏, 等. 基于高斯过程回归的锂离子电池SOC估计[J]. 储能科学与技术, 2020, 9(1): 131-137.
|
|
LI J B, WEI M, YE M, et al. SOC estimation of lithium-ion batteries based on Gauss process regression[J]. Energy Storage Science and Technology, 2020, 9(1): 131-137.
|
17 |
JONES B, GOOS P. Optimal design of blocked experiments in the presence of supplementary information about the blocks[J]. Journal of Quality Technology, 2015, 47(4): 301-317.
|
18 |
JONES B, JOHNSON R T. Design and analysis for the Gaussian process model[J]. Quality and Reliability Engineering International, 2009, 25(5): 515-524.
|
19 |
JOSEPH V R, GUL E, BA S. Maximum projection designs for computer experiments[J]. Biometrika, 2015, 102(2): 371-380.
|
20 |
SMITH R C. Uncertainty quantification. theory, implementation, and applications[M]. Siam, 2013.
|