储能科学与技术 ›› 2022, Vol. 11 ›› Issue (11): 3521-3533.doi: 10.19799/j.cnki.2095-4239.2022.0243
马康1,3(), 高志浩2,3, 骆林2,3, 宋鑫2,3, 戴作强2,3, 何田2,3, 张健敏2,3()
收稿日期:
2022-05-07
修回日期:
2022-05-26
出版日期:
2022-11-05
发布日期:
2022-11-09
通讯作者:
张健敏
E-mail:1205837156@qq.com;zhangjm@qdu.edu.cn
作者简介:
马康(1997—),男,硕士研究生,研究方向为聚合物功能膜材料,E-mail:1205837156@qq.com;
基金资助:
Kang MA1,3(), Zhihao GAO2,3, Lin LUO2,3, Xin SONG2,3, Zuoqiang DAI2,3, Tian HE2,3, Jianmin ZHANG2,3()
Received:
2022-05-07
Revised:
2022-05-26
Online:
2022-11-05
Published:
2022-11-09
Contact:
Jianmin ZHANG
E-mail:1205837156@qq.com;zhangjm@qdu.edu.cn
摘要:
锂硫电池因为具有极高的能量密度和理论比容量,而且作为正极主要材料的单质硫储量丰富、生产成本较低,被认为是未来储能领域中最具应用前景的一类电池。但是在其实际应用之前还有一些技术难题亟待解决,比如活性材料硫的导电性差、正极体积膨胀、穿梭效应等问题严重影响了电池的循环稳定性,尤其是可溶解的长链多硫化物中间体在正极与负极之间来回迁移引起的“穿梭效应”。隔膜作为锂硫电池的关键内层组件,处在正极和负极之间,是抑制多硫化物穿梭的重要屏障,然而目前市场上商用的聚烯烃类隔膜存在较大的孔径,多硫化物容易从中穿过,而且这类隔膜也不具备捕捉多硫化物的能力,因此需要设计具有抑制多硫化物穿梭的功能性隔膜来提升锂硫电池的综合性能。本工作根据多硫化物与隔膜涂层之间的相互作用,将抑制多硫化物穿梭的方法进一步分为物理限制和化学限制,主要介绍了聚丙烯基以及新型纤维素基两类隔膜的研究进展,最后对具有抑制多硫化物穿梭功能的锂硫电池隔膜未来的发展方向进行了展望。
中图分类号:
马康, 高志浩, 骆林, 宋鑫, 戴作强, 何田, 张健敏. 锂硫电池隔膜在不同抑制“穿梭效应”策略中的研究进展[J]. 储能科学与技术, 2022, 11(11): 3521-3533.
Kang MA, Zhihao GAO, Lin LUO, Xin SONG, Zuoqiang DAI, Tian HE, Jianmin ZHANG. Research progress on lithium-sulfur battery separators for different strategies to inhibit the “shuttle effect”[J]. Energy Storage Science and Technology, 2022, 11(11): 3521-3533.
表1
物理限制聚丙烯基改性隔膜电化学性能"
隔膜涂层材料 | 硫负载量/(mg/cm2) | 隔膜涂层负载量/(mg/cm2) | 倍率性能 | N次循环数据(mAh/g)/循环周期/ 电流倍率 | 容量衰减率/% | 参考文献 |
---|---|---|---|---|---|---|
Nafion | 0.15 | 0.7 | 450/1C | 628/500/1 | 0.08 | [ |
Nafion/Super P | 0.15 | 0.15 | 302/1C | 430/250/0.5 | 0.22 | [ |
Nafion/GO | 0.053 | 0.053 | 570/2C | 676/200/0.5 | 0.18 | [ |
MWCNT/SPANI | 5 | 0.56 | 358/0.6C | 913/100/0.06 | 0.18 | [ |
rGO@SL | 1.5 | 0.2 | 707/2C | 523/1000/2 | 0.026 | [ |
S62--VPP | 1.0 | — | 415/5C | 840/2000/3 | 0.012 | [ |
MPC | 1.55 | 0.5 | — | 723/500/0.5 | 0.081 | [ |
MWCNTs | 2 | 0.17 | — | 621/300/1 | 0.14 | [ |
ACNF | 2.1 | 0.35 | — | 819/200/0.5 | 0.13 | [ |
CGF | 5.3 | 0.3 | 1000/2C | 800/250/0.5 | 0.11 | [ |
CF | 3.1 | 0.53 | 539/1.3C | —/800/0.5 | 0.035 | [ |
表2
化学限制聚丙烯基改性隔膜电化学性能"
隔膜涂层材料 | 硫负载量/(mg/cm2) | 隔膜涂层负载量/(mg/cm2) | 倍率性能 | N次循环数据(mAh/g)/循环次数/ 电流倍率 | 容量衰减率/% | 参考文献 |
---|---|---|---|---|---|---|
N,P-HC | 2.0 | 0.36 | 674/1 C | 638/900/0.2 | 0.08 | [ |
N,O-CBBC | 2.0 | 0.95 | 913/1 C | 656/600/0.5 | 0.22 | [ |
CoN-CNT/HPC | 1.0 | 0.3 | 782/2 C | 678/500/2 | 0.18 | [ |
Al2O3 | 1.6 | — | 452/1 C | 593/50/0.2 | 0.18 | [ |
CNT/Al2O3 | 1.2 | — | 812/1 C | 760/100/0.2 | 0.026 | [ |
Nb2O5-CNT | 1.5 | 0.38 | 507/5 C | 992/100/0.2 | 0.012 | [ |
MnO2 | 1.2 | — | 494/2 C | 494/500/0.5 | 0.081 | [ |
rGO@MoS2 | 2.0 | 0.24 | 615/1 C | 368/500/1 | 0.116 | [ |
CNTs /MoS2 | — | — | 600/2 C | 636/500/1 | 0.01 | [ |
(M-P/P)10 | 1.2 | 0.1 | 766/3 C | 423/2000/1 | 0.13 | [ |
LDH@NG | 1.2 | 0.3 | 709/2 C | 337/1000/2 | 0.11 | [ |
ZnS-SnS@NC | 2.2 | — | 661/10 C | 632/2000/4 | 0.013 | [ |
TiB2 | 1.5 | 0.88 | 700/5 C | 850/300/0.5 | 0.05 | [ |
ZnS@WCF | 1.0 | — | 806/2 C | 685/600/1 | 0.045 | [ |
1 | SONG M K, CAIRNS E J, ZHANG Y G. Lithium/sulfur batteries with high specific energy: Old challenges and new opportunities[J]. Nanoscale, 2013, 5(6): 2186-2204. |
2 | LIN D C, LIU Y Y, CUI Y. Reviving the lithium metal anode for high-energy batteries[J]. Nature Nanotechnology, 2017, 12(3): 194-206. |
3 | ZHAO Q, HAO Z D, TANG J D, et al. Cation-selective separators for addressing the lithium-sulfur battery challenges[J]. ChemSusChem, 2021, 14(3): 792-807. |
4 | ZHENG D, ZHANG X R, WANG J K, et al. Reduction mechanism of sulfur in lithium-sulfur battery: From elemental sulfur to polysulfide[J]. Journal of Power Sources, 2016, 301: 312-316. |
5 | MANTHIRAM A, FU Y Z, SU Y S. Challenges and prospects of lithium-sulfur batteries[J]. Accounts of Chemical Research, 2013, 46(5): 1125-1134. |
6 | DENG N P, KANG W M, LIU Y B, et al. A review on separators for lithiumsulfur battery: Progress and prospects[J]. Journal of Power Sources, 2016, 331: 132-155. |
7 | 黄佳琦, 孙滢智, 王云飞, 等. 锂硫电池先进功能隔膜的研究进展[J]. 化学学报, 2017, 75(2): 173-188. |
HUANG J Q,SUN Y Z,WANG Y F, et al. Review on advanced functional separators for lithium-sulfur batteries[J]. Acta Chimica Sinica, 2017, 75(2): 173-188. | |
8 | HUANG J Q, ZHANG Q, WEI F. Multi-functional separator/interlayer system for high-stable lithium-sulfur batteries: Progress and prospects[J]. Energy Storage Materials, 2015, 1: 127-145. |
9 | JEONG Y C, KIM J H, NAM S, et al. Rational design of nanostructured functional interlayer/separator for advanced Li-S batteries[J]. Advanced Functional Materials, 2018, 28(38): doi: 10.1002/adfm.201707411. |
10 | 曹连胜, 赵超, 金欣, 等. 基于离子选择性迁移策略的动力/储能电池隔膜的研究进展[J]. 复合材料学报, 2021, 38(7): 2025-2037. |
CAO L S, ZHAO C, JIN X, et al. Research progress of power/energy storage battery separator based on selective ion migration strategy[J]. Acta Materiae Compositae Sinica, 2021, 38(7): 2025-2037. | |
11 | HUANG J Q, ZHANG Q, PENG H J, et al. Ionic shield for polysulfides towards highly-stable lithium-sulfur batteries[J]. Energy Environ Sci, 2014, 7(1): 347-353. |
12 | HAO Z X, YUAN L X, LI Z, et al. High performance lithium-sulfur batteries with a facile and effective dual functional separator[J]. Electrochimica Acta, 2016, 200: 197-203. |
13 | ZHUANG T Z, HUANG J Q, PENG H J, et al. Rational integration of polypropylene/graphene oxide/nafion as ternary-layered separator to retard the shuttle of polysulfides for lithium-sulfur batteries[J]. Small, 2016, 12(3): 381-389. |
14 | SHI L, ZENG F L, CHENG X, et al. Enhanced performance of lithium-sulfur batteries with high sulfur loading utilizing ion selective MWCNT/SPANI modified separator[J]. Chemical Engineering Journal, 2018, 334: 305-312. |
15 | ZHOU Y C, ZHANG Y Y, LI X D. Upcycling of paper waste for high-performance lithium-sulfur batteries[J]. Materials Today Energy, 2021, 19: doi: 10.1016/j.mtener.2020.100591. |
16 | LEI T Y, CHEN W, LV W Q, et al. Inhibiting polysulfide shuttling with a graphene composite separator for highly robust lithium-sulfur batteries[J]. Joule, 2018, 2(10): 2091-2104. |
17 | HE Y B, QIAO Y, CHANG Z, et al. Developing A "polysulfide-phobic" strategy to restrain shuttle effect in lithium-sulfur batteries[J]. Angewandte Chemie International Edition, 2019, 58(34): 11774-11778. |
18 | LI C Y, WARD A L, DORIS S E, et al. Polysulfide-blocking microporous polymer membrane tailored for hybrid Li-sulfur flow batteries[J]. Nano Letters, 2015, 15(9): 5724-5729. |
19 | BALACH J, JAUMANN T, KLOSE M, et al. Functional mesoporous carbon-coated separator for long-life, high-energy lithium-sulfur batteries[J]. Advanced Functional Materials, 2015, 25(33): 5285-5291. |
20 | CHUNG S H, MANTHIRAM A. High-performance Li-S batteries with an ultra-lightweight MWCNT-coated separator[J]. The Journal of Physical Chemistry Letters, 2014, 5(11): 1978-1983. |
21 | CHUNG S H, HAN P, SINGHAL R, et al. Electrochemically stable rechargeable lithium-sulfur batteries with a microporous carbon nanofiber filter for polysulfide[J]. Advanced Energy Materials, 2015, 5(18): doi: 10.1002/aenm.201500738. |
22 | CHANG C H, CHUNG S H, MANTHIRAM A. Ultra-lightweight PANiNF/MWCNT-functionalized separators with synergistic suppression of polysulfide migration for Li-S batteries with pure sulfur cathodes[J]. Journal of Materials Chemistry A, 2015, 3(37): 18829-18834. |
23 | PENG H J, WANG D W, HUANG J Q, et al. Janus separator of polypropylene-supported cellular graphene framework for sulfur cathodes with high utilization in lithium-sulfur batteries[J]. Advanced Science, 2016, 3(1): doi: 10.1002/advs.201500268. |
24 | ZHU J X, YANG D, YIN Z Y, et al. Graphene and graphene-based materials for energy storage applications[J]. Small, 2014, 10(17): 3480-3498. |
25 | BAI S Y, LIU X Z, ZHU K, et al. Metal-organic framework-based separator for lithium-sulfur batteries[J]. Nature Energy, 2016, 1: doi: 10.1038/nenergy.2016.94. |
26 | SEH Z W, ZHANG Q F, LI W Y, et al. Stable cycling of lithium sulfide cathodes through strong affinity with a bifunctional binder[J]. Chemical Science, 2013, 4(9): 3673. |
27 | ZHENG G Y, ZHANG Q F, CHA J J, et al. Amphiphilic surface modification of hollow carbon nanofibers for improved cycle life of lithium sulfur batteries[J]. Nano Letters, 2013, 13(3): 1265-1270. |
28 | LIU J H, LI W F, DUAN L M, et al. A graphene-like oxygenated carbon nitride material for improved cycle-life lithium/sulfur batteries[J]. Nano Letters, 2015, 15(8): 5137-5142. |
29 | ZENG P, HUANG L W, ZHANG X L, et al. Long-life and high-areal-capacity lithium-sulfur batteries realized by a honeycomb-like N, P dual-doped carbon modified separator[J]. Chemical Engineering Journal, 2018, 349: 327-337. |
30 | DENG C, WANG Z W, WANG S P, et al. Inhibition of polysulfide diffusion in lithium-sulfur batteries: Mechanism and improvement strategies[J]. Journal of Materials Chemistry A, 2019, 7(20): 12381-12413. |
31 | TIKEKAR M D, CHOUDHURY S, TU Z Y, et al. Design principles for electrolytes and interfaces for stable lithium-metal batteries[J]. Nature Energy, 2016, 1: doi: 10.1038/nenergy.2016.114. |
32 | LI Q, LIU Y P, YANG L W, et al. N, O co-doped chlorella-based biomass carbon modified separator for lithium-sulfur battery with high capacity and long cycle performance[J]. Journal of Colloid and Interface Science, 2021, 585: 43-50. |
33 | LIU L, YANG F, GE L, et al. Facile and low-cost preparation of Co and N co-doped hierarchical porous carbon as a functional separator for Li-S batteries[J]. Electrochimica Acta, 2022, 401: doi: 10.1016/j.electacta.2021.139380. |
34 | HOU T Z, CHEN X, PENG H J, et al. Design principles for heteroatom-doped nanocarbon to achieve strong anchoring of polysulfides for lithium-sulfur batteries[J]. Small, 2016, 12(24): 3283-3291. |
35 | HAN Z Y, ZHAO S Y, XIAO J W, et al. Engineering d-p orbital hybridization in single-atom metal-embedded three-dimensional electrodes for Li-S batteries[J]. Advanced Materials, 2021, 33(44): doi: 10.1002/adma.202105947. |
36 | ZHANG Z Y, LAI Y Q, ZHANG Z A, et al. Al2O3-coated porous separator for enhanced electrochemical performance of lithium sulfur batteries[J]. Electrochimica Acta, 2014, 129: 55-61. |
37 | CHEN X, HUANG Y D, LI J, et al. Bifunctional separator with sandwich structure for high-performance lithium-sulfur batteries[J]. Journal of Colloid and Interface Science, 2020, 559: 13-20. |
38 | LIM W G, KIM S, JO C, et al. A comprehensive review of materials with catalytic effects in Li-S batteries: Enhanced redox kinetics[J]. Angewandte Chemie, 2019, 131(52): 18920-18931. |
39 | WANG X, YANG L W, WANG Y, et al. Novel functional separator with self-assembled MnO2 layer via a simple and fast method in lithium-sulfur battery[J]. Journal of Colloid and Interface Science, 2022, 606: 666-676. |
40 | LIU Y J, CHEN M Q, SU Z, et al. Direct trapping and rapid conversing of polysulfides via a multifunctional Nb2O5-CNT catalytic layer for high performance lithium-sulfur batteries[J]. Carbon, 2021, 172: 260-271. |
41 | TAN L, LI X H, WANG Z X, et al. Lightweight reduced graphene Oxide@MoS2 interlayer as polysulfide barrier for high-performance lithium-sulfur batteries[J]. ACS Applied Materials & Interfaces, 2018, 10(4): 3707-3713. |
42 | 顾品超, 张楷亮, 冯玉林, 等. 层状二硫化钼研究进展[J]. 物理学报, 2016, 65(1): 32-40. |
GU P C, ZHANG K L, FENG Y L, et al. Recent progress of two-dimensional layered molybdenum disulfide[J]. Acta Physica Sinica, 2016, 65(1): 32-40. | |
43 | JEONG Y C, KIM J H, KWON S H, et al. Rational design of exfoliated 1T MoS2@CNT-based bifunctional separators for lithium sulfur batteries[J]. Journal of Materials Chemistry A, 2017, 5(45): 23909-23918. |
44 | WU J Y, ZENG H X, LI X W, et al. Ultralight layer-by-layer self-assembled MoS2-polymer modified separator for simultaneously trapping polysulfides and suppressing lithium dendrites[J]. Advanced Energy Materials, 2018, 8(35): doi: 10.1002/aenm.201802430. |
45 | YANG J L, ZHAO S X, LU Y M, et al. ZnS spheres wrapped by an ultrathin wrinkled carbon film as a multifunctional interlayer for long-life Li-S batteries[J]. Journal of Materials Chemistry A, 2020, 8(1): 231-241. |
46 | YAO W Q, ZHENG W Z, XU J, et al. ZnS-SnS@NC heterostructure as robust lithiophilicity and sulfiphilicity mediator toward high-rate and long-life lithium-sulfur batteries[J]. ACS Nano, 2021, 15(4): 7114-7130. |
47 | PENG H J, ZHANG Z W, HUANG J Q, et al. A cooperative interface for highly efficient lithium-sulfur batteries[J]. Advanced Materials, 2016, 28(43): 9551-9558. |
48 | JIN L M, NI J, SHEN C, et al. Metallically conductive TiB2 as a multi-functional separator modifier for improved lithium sulfur batteries[J]. Journal of Power Sources, 2020, 448: doi: 10.1016/j.jpowsour.2019.227336. |
49 | WANG Z H, LEE Y H, KIM S W, et al. Why cellulose-based electrochemical energy storage devices? [J]. Advanced Materials, 2021, 33(28): doi: 10.1002/adma.202000892. |
50 | MUSINO D, RIVARD C, LANDROT G, et al. Hydroxyl groups on cellulose nanocrystal surfaces form nucleation points for silver nanoparticles of varying shapes and sizes[J]. Journal of Colloid and Interface Science, 2021, 584: 360-371. |
51 | YU B C, PARK K, JANG J H, et al. Cellulose-based porous membrane for suppressing Li dendrite formation in lithium-sulfur battery[J]. ACS Energy Letters, 2016, 1(3): 633-637. |
52 | LI W, WANG S, FAN Z, et al. Functionalized bacterial cellulose as a separator to address polysulfides shuttling in lithium-sulfur batteries[J]. Materials Today Energy, 2021, 21: doi: 10.1016/j.mtener.2021.100813. |
53 | WU S L, SHI J Y, NIE X L, et al. Multi-duties for one post: Biodegradable bacterial cellulose-based separator for lithium sulfur batteries[J]. Carbohydrate Polymers, 2022, 285: doi: 10.1016/j.carbpol.2022.119201. |
54 | WU S L, SHI J Y, NIE X L, et al. Microporous cyclodextrin film with funnel-type channel polymerized on electrospun cellulose acetate membrane as separators for strong trapping polysulfides and boosting charging in lithium-sulfur batteries[J]. Energy & Environmental Materials, 2022: doi: 10.1002/eem2.12319. |
55 | LI J X, DAI L Q, WANG Z F, et al. Cellulose nanofiber separator for suppressing shuttle effect and Li dendrite formation in lithium-sulfur batteries[J]. Journal of Energy Chemistry, 2022, 67: 736-744. |
[1] | 张斌伟, 魏子栋, 孙世刚. 室温钠硫电池硫化钠正极的发展现状与应用挑战[J]. 储能科学与技术, 2022, 11(9): 2811-2824. |
[2] | 王小飞, 蓝大为, 张道明, 薛浩亮, 周思飞, 刘闯, 李骏, 王振东. 基于锂掺杂分子筛改性隔膜的高性能锂硫电池[J]. 储能科学与技术, 2022, 11(11): 3447-3454. |
[3] | 谷 穗,靳 俊,卢 洋,钱 荣,温兆银. 锂硫电池的穿梭效应与抑制[J]. 储能科学与技术, 2017, 6(5): 1026-1040. |
[4] | 袁华栋,罗剑敏,金成滨,盛欧微,黄 辉,张文魁,陶新永. 高性能锂硫电池正极用碳基材料的表、界面修饰[J]. 储能科学与技术, 2017, 6(3): 380-410. |
[5] | 郑鸿鹏1,陈 挺1,徐比翼1,田 然1,刘河洲1,段华南1,王 可2,吴勇民2. 基于LLZO的复合电解质对Li-S电池穿梭效应的抑制[J]. 储能科学与技术, 2016, 5(5): 719-724. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||