储能科学与技术 ›› 2022, Vol. 11 ›› Issue (11): 3534-3547.doi: 10.19799/j.cnki.2095-4239.2022.0300
收稿日期:
2022-06-01
修回日期:
2022-07-09
出版日期:
2022-11-05
发布日期:
2022-11-09
通讯作者:
赵兰
E-mail:94386994@qq.com
作者简介:
赵兰(1982—),女,工程师,研究方向为空调制冷、相变材料,E-mail:94386994@qq.com。
Received:
2022-06-01
Revised:
2022-07-09
Online:
2022-11-05
Published:
2022-11-09
Contact:
Lan ZHAO
E-mail:94386994@qq.com
摘要:
相变材料(PCM)通过在相变过程中吸热或放热实现热能的存储与释放。相变材料在热能存储和热管理领域凭借其相变区间温度稳定、储能密度大受到了广泛认可。然而,相变材料普遍存在热导率低的问题,需要结合传热强化技术进行改善。在采用某一种强化技术的基础上,两种或多种传热强化技术相组合的“复合强化技术”成为目前传热强化与相变蓄热性能改善的研究热点。本文通过对相关文献的分析,综述了目前复合传热强化技术的研究进展,包括以翅片为基础,分别结合热管、纳米颗粒、多孔材料和梯级蓄热,以及多孔材料结合热管、纳米材料和梯级蓄热等多种复合方式。分析表明:通过将热管与翅片或多孔材料混合使用,可以达到传热强化最佳效果;纳米颗粒与翅片或多孔材料的混合使用比同等条件下单独使用纳米颗粒更有效;采用梯级蓄热与翅片或多孔材料相结合相较于单独采用梯级蓄热具有更快的蓄/放热速率和更加均匀的换热流体出口温度。建议对其他可能的复合传热增强技术进行深入研究,并通过实验验证、优化蓄热系统的结构设计和具体参数探讨对蓄热性能的影响。
中图分类号:
赵兰, 王国珍. 相变蓄热复合传热强化技术综述[J]. 储能科学与技术, 2022, 11(11): 3534-3547.
Lan ZHAO, Guozhen WANG. Research progress on composite heat transfer enhancement technology of phase change heat storage system[J]. Energy Storage Science and Technology, 2022, 11(11): 3534-3547.
1 | 张仁元, 等. 相变材料与相变储能技术[M]. 北京: 科学出版社, 2009.ZHANG R Y, et al. Phase change materials and phase change heat storage technology[M]. Beijing: Science Press, 2009. |
2 | NAZIR H, BATOOL M, BOLIVAR OSORIO F J, et al. Recent developments in phase change materials for energy storage applications: A review[J]. International Journal of Heat and Mass Transfer, 2019, 129: 491-523. |
3 | LI Q, LI C, DU Z, et al. A review of performance investigation and enhancement of shell and tube thermal energy storage device containing molten salt based phase change materials for medium and high temperature applications[J]. Applied Energy, 2019, 255: doi:10.1016/j.apenergy.2019.113806. |
4 | MERLIN K, DELAUNAY D, SOTO J, et al. Heat transfer enhancement in latent heat thermal storage systems: Comparative study of different solutions and thermal contact investigation between the exchanger and the PCM[J]. Applied Energy, 2016, 166: 107-116. |
5 | TAO Y B, HE Y L. A review of phase change material and performance enhancement method for latent heat storage system[J]. Renewable and Sustainable Energy Reviews, 2018, 93: 245-259. |
6 | 金光, 肖安汝, 刘梦云. 相变储能强化传热技术的研究进展[J]. 储能科学与技术, 2019, 8(6): 1107-1115. |
JIN G, XIAO A R, LIU M Y. Research progress on heat transfer enhancement technology of phase change energy storage[J]. Energy Storage Science and Technology, 2019, 8(6): 1107-1115. | |
7 | 林文珠, 凌子夜, 方晓明, 等. 相变储热的传热强化技术研究进展[J]. 化工进展, 2021, 40(9): 5166-5179. |
LIN W Z, LING Z Y, FANG X M, et al. Research progress on heat transfer of phase change material heat storage technology[J]. Chemical Industry and Engineering Progress, 2021, 40(9): 5166-5179. | |
8 | MA Z J, LIN W Y, SOHEL M I. Nano-enhanced phase change materials for improved building performance[J]. Renewable and Sustainable Energy Reviews, 2016, 58: 1256-1268. |
9 | IBRAHIM N I, AL-SULAIMAN F A, RAHMAN S, et al. Heat transfer enhancement of phase change materials for thermal energy storage applications: A critical review[J]. Renewable and Sustainable Energy Reviews, 2017, 74: 26-50. |
10 | 杨兆晟, 张群力, 张文婧, 等. 中温相变蓄热系统强化传热方法研究进展[J]. 化工进展, 2019, 38(10): 4389-4402. |
YANG Z S, ZHANG Q L, ZHANG W J, et al. Research progress on heat transfer enhancement methods for medium temperature latent heat thermal energy storage systems[J]. Chemical Industry and Engineering Progress, 2019, 38(10): 4389-4402. | |
11 | 张永学, 王梓熙, 鲁博辉, 等. 雪花型翅片提高相变储热单元储/放热性能[J]. 储能科学与技术, 2022, 11(2): 521-530. |
ZHANG Y X, WANG Z X, LU B H, et al. Enhancement of charging and discharging performance of a latent-heat thermal-energy storage unit using snowflake-shaped fins[J]. Energy Storage Science and Technology, 2022, 11(2): 521-530. | |
12 | 王君雷, 徐祥贵, 孙通, 等. 一种螺旋翅片式相变储热单元的储热优化模拟[J]. 储能科学与技术, 2021, 10(2): 514-522. |
WANG J L, XU X G, SUN T, et al. Simulation of heat storage process in spiral fin phase change heat storage unit[J]. Energy Storage Science and Technology, 2021, 10(2): 514-522. | |
13 | SHON J, KIM H, LEE K. Improved heat storage rate for an automobile coolant waste heat recovery system using phase-change material in a fin-tube heat exchanger[J]. Applied Energy, 2014, 113: 680-689. |
14 | 叶三宝, 刁彦华, 赵耀华. 新型平板热管相变蓄热器蓄放热性能分析[J]. 电力建设, 2014, 35(7): 136-140. |
YE S B, DIAO Y H, ZHAO Y H. Heat storage-release property of phase-change thermal storage system with new flat heat pipe[J]. Electric Power Construction, 2014, 35(7): 136-140. | |
15 | ESSA M A, ROFAIEL I Y, AHMED M A. Experimental and theoretical analysis for the performance of evacuated tube collector integrated with helical finned heat pipes using PCM energy storage[J]. Energy, 2020, 206: doi:10.1016/j.energy.2020.118166. |
16 | TIARI S, QIU S G, MAHDAVI M. Numerical study of finned heat pipe-assisted thermal energy storage system with high temperature phase change material[J]. Energy Conversion and Management, 2015, 89: 833-842. |
17 | TIARI S, QIU S G, MAHDAVI M. Discharging process of a finned heat pipe-assisted thermal energy storage system with high temperature phase change material[J]. Energy Conversion and Management, 2016, 118: 426-437. |
18 | LOHRASBI S, MIRY S Z, GORJI-BANDPY M, et al. Performance enhancement of finned heat pipe assisted latent heat thermal energy storage system in the presence of nano-enhanced H2O as phase change material[J]. International Journal of Hydrogen Energy, 2017, 42(10): 6526-6546. |
19 | 肖玉麒, 甘曦梓, 曾轶, 等. 碳纳米管填料对相变储能式热沉性能的影响[J]. 浙江大学学报(工学版), 2014, 48(10): 1732-1738. |
XIAO Y Q, GAN X Z, ZENG Y, et al. Effects of carbon nanotube fillers on performance of phase change energy storage-based heat sinks[J]. Journal of Zhejiang University (Engineering Science), 2014, 48(10): 1732-1738. | |
20 | UL HASNAIN F, IRFAN M, KHAN M M, et al. Melting performance enhancement of a phase change material using branched fins and nanoparticles for energy storage applications[J]. Journal of Energy Storage, 2021, 38: doi:10.1016/j.est.2021.102513. |
21 | MAHDI J M, NSOFOR E C. Melting enhancement in triplex-tube latent thermal energy storage system using nanoparticles-fins combination[J]. International Journal of Heat and Mass Transfer, 2017, 109: 417-427. |
22 | ELAREM R, ALQAHTANI T, MELLOULI S, et al. Numerical study of an Evacuated Tube Solar Collector incorporating a Nano-PCM as a latent heat storage system[J]. Case Studies in Thermal Engineering, 2021, 24: doi: 10.1016/j.csite.2021.100859. |
23 | 王晨羽. 基于梯级相变的储能换热器的研究[D]. 北京: 北京建筑大学, 2021. |
WANG C Y. Research on heat exchange device based on cascade phase change energy storage[D]. Beijing: Beijing University of Civil Engineering and Architecture, 2021. | |
24 | SODHI G S, MUTHUKUMAR P. Compound charging and discharging enhancement in multi-PCM system using non-uniform fin distribution[J]. Renewable Energy, 2021, 171: 299-314. |
25 | XU H T, WANG N, ZHANG C Y, et al. Optimization on the melting performance of triplex-layer PCMs in a horizontal finned shell and tube thermal energy storage unit[J]. Applied Thermal Engineering, 2020, 176: doi:10.1016/j.applthermaleng.2020.115409. |
26 | SEFIDAN A M, SOJOUDI A, SAHA S C, et al. Multi-layer PCM solidification in a finned triplex tube considering natural convection[J]. Applied Thermal Engineering, 2017, 123: 901-916. |
27 | CHIU J N W, MARTIN V. Multistage latent heat cold thermal energy storage design analysis[J]. Applied Energy, 2013, 112: 1438-1445. |
28 | 姜峰. 陶瓷耦合中高温相变储热材料的制备、储热与强化传热研究[D]. 北京: 北京科技大学, 2020. |
JIANG F. Study on preparation, heat storage and enhanced heat transfer of ceramic coupling medium-and high-temperature phase change materials[D]. Beijing: University of Science and Technology Beijing, 2020. | |
29 | 迟蓬涛, 高红霞, 余建祖, 等. 翅片-泡沫铜复合结构的导热增强作用[J]. 航空动力学报, 2012, 27(4): 854-860. |
CHI P T, GAO H X, YU J Z, et al. Heat transfer enhancement of fin-copper foam composite structure[J]. Journal of Aerospace Power, 2012, 27(4): 854-860. | |
30 | XIE Y Q, CHI P T, ZHOU Y, et al. Heat transfer enhancement for thermal energy storage using fin-copper foam within phase change materials[J]. Heat Transfer Engineering, 2014,12: 10729-10754. |
31 | ZHANG C W, FAN Y B, YU M, et al. Performance evaluation and analysis of a vertical heat pipe latent thermal energy storage system with fins-copper foam combination[J]. Applied Thermal Engineering, 2020, 165: doi: 10.1016/j.applthermaleng.2019.114541. |
32 | YANG X H, YU J B, XIAO T, et al. Design and operating evaluation of a finned shell-and-tube thermal energy storage unit filled with metal foam[J]. Applied Energy, 2020, 261: doi:10.1016/j.apenergy.2019.114385. |
33 | 田伟, 梁晓光, 党硕, 等. 金属泡沫-翅片复合结构强化相变蓄热的实验研究[J]. 西安交通大学学报, 2021, 55(11): 17-24. |
TIAN W, LIANG X G, DANG S, et al. Visualized experimental study on the phase change heat storage enhanced with metal foam[J]. Journal of Xi'an Jiaotong University, 2021, 55(11): 17-24. | |
34 | ALLEN M J, SHARIFI N, FAGHRI A, et al. Effect of inclination angle during melting and solidification of a phase change material using a combined heat pipe-metal foam or foil configuration[J]. International Journal of Heat and Mass Transfer, 2015, 80: 767-780. |
35 | 梁林, 刁彦华, 康亚盟, 等. 平板微热管阵列-泡沫铜复合结构相变蓄热装置蓄放热特性[J]. 化工学报, 2018, 69(S1): 34-42. |
LIANG L, DIAO Y H, KANG Y M, et al. Characteristic of latent heat thermal energy storage strengthened by flat micro heat pipe array-copper foam composite structure[J]. CIESC Journal, 2018, 69(S1): 34-42. | |
36 | LIANG L, DIAO Y H, ZHAO Y H, et al. Experimental and numerical investigations of latent thermal energy storage using combined flat micro-heat pipe array-metal foam configuration: Simultaneous charging and discharging[J]. Renewable Energy, 2021, 171: 416-430. |
37 | NITHYANANDAM K, PITCHUMANI R. Computational studies on metal foam and heat pipe enhanced latent thermal energy storage[J]. Journal of Heat Transfer, 2014, 136: 051503. |
38 | REN Q L, MENG F L, GUO P H. A comparative study of PCM melting process in a heat pipe-assisted LHTES unit enhanced with nanoparticles and metal foams by immersed boundary-lattice Boltzmann method at pore-scale[J]. International Journal of Heat and Mass Transfer, 2018, 121: 1214-1228. |
39 | HASHEM ZADEH S M, MEHRYAN S A M, GHALAMBAZ M, et al. Hybrid thermal performance enhancement of a circular latent heat storage system by utilizing partially filled copper foam and Cu/GO nano-additives[J]. Energy, 2020, 213: doi: 10.1016/j.energy.2020.118761 |
40 | MAHDI J M, NSOFOR E C. Solidification enhancement in a triplex-tube latent heat energy storage system using nanoparticles-metal foam combination[J]. Energy, 2017, 126: 501-512. |
41 | SENOBAR H, ARAMESH M, SHABANI B. Nanoparticles and metal foams for heat transfer enhancement of phase change materials: A comparative experimental study[J]. Journal of Energy Storage, 2020, 32: doi: 10.1016/j.est.2020.101911. |
42 | NEDJEM K, TEGGAR M, HADIBI T, et al. Hybrid thermal performance enhancement of shell and tube latent heat thermal energy storage using nano-additives and metal foam[J]. Journal of Energy Storage, 2021, 44:doi: 10.1016/j.est.2021.103347 |
43 | LAKSHMI NARASIMHAN N. Assessment of latent heat thermal storage systems operating with multiple phase change materials[J]. Journal of Energy Storage, 2019, 23: 442-455. |
44 | ZHU F, ZHANG C, GONG X L. Numerical analysis on the energy storage efficiency of phase change material embedded in finned metal foam with graded porosity[J]. Applied Thermal Engineering, 2017, 123: 256-265. |
45 | 郭绍振, 肖光明, 张楠, 等. 基于复合相变材料的梯级组合蓄热特性研究[J]. 制冷学报, 2020, 41(3): 140-146. |
GUO S Z, XIAO G M, ZHANG N, et al. Study on the heat storage characteristics of cascade heat storage based on composite phase change material[J]. Journal of Refrigeration, 2020, 41(3): 140-146. | |
46 | HASSANI S A M, DOMIRI G D. Melting effect in triplex-tube thermal energy storage system using multiple PCMs-porous metal foam combination[J]. Journal of Energy Storage, 2021, 43: doi: 10.1016/j.est.2021.103154. |
47 | MAHDI J M, MOHAMMED H I, HASHIM E T, et al. Solidification enhancement with multiple PCMs, cascaded metal foam and nanoparticles in the shell-and-tube energy storage system[J]. Applied Energy, 2020, 257: doi: 10.1016/j.apenergy.2019.113993. |
48 | TIAN Y, ZHAO C Y. Thermal and exergetic analysis of metal foam-enhanced cascaded thermal energy storage (MF-CTES)[J]. International Journal of Heat and Mass Transfer, 2013, 58(1/2): 86-96. |
[1] | 李江峰, 李帅旗, 阮先轸, 徐磊, 张孝春, 宋文吉, 冯自平. 纯电动汽车CO2 热泵空调及整车热管理概述[J]. 储能科学与技术, 2022, 11(9): 2959-2970. |
[2] | 李明飞, 饶睦敏, 孙婉妹, 崔树鑫, 陈伟. 基于多孔介质模化的大容量电池储能热管理系统性能分析方法[J]. 储能科学与技术, 2022, 11(8): 2526-2536. |
[3] | 张进强, 王海民, 鲁南. 绝缘油浸没式冷却小型NCM811动力电池模组的温度场特性实验[J]. 储能科学与技术, 2022, 11(8): 2612-2619. |
[4] | 孔为, 金劲涛, 陆西坡, 孙洋. 对称蛇形流道锂离子电池冷却性能[J]. 储能科学与技术, 2022, 11(7): 2258-2265. |
[5] | 元佳宇, 李昕光, 王文超, 付程阔. 考虑质量流量的电池组蛇形冷却结构仿真[J]. 储能科学与技术, 2022, 11(7): 2274-2281. |
[6] | 刘显茜, 孙安梁, 田川. 基于仿生翅脉流道冷板的锂离子电池组液冷散热[J]. 储能科学与技术, 2022, 11(7): 2266-2273. |
[7] | 冯锦新, 凌子夜, 方晓明, 张正国. 相变乳液的研究进展[J]. 储能科学与技术, 2022, 11(6): 1968-1979. |
[8] | 柯巧敏, 郭剑, 王亦伟, 曹文炅, 陈满, 蒋方明. 液冷式热管理对动力电池热失控阻隔性能[J]. 储能科学与技术, 2022, 11(5): 1634-1640. |
[9] | 杜江龙, 林伊婷, 杨雯棋, 练成, 刘洪来. 模拟仿真在锂离子电池热安全设计中的应用[J]. 储能科学与技术, 2022, 11(3): 866-877. |
[10] | 张永学, 王梓熙, 鲁博辉, 杨胜旗, 赵泓宇. 雪花型翅片提高相变储热单元储/放热性能[J]. 储能科学与技术, 2022, 11(2): 521-530. |
[11] | 刘立君, 宁雅倩, 李晓庆, 刘晓燕. 偏心分形翅片管相变储热单元性能强化模拟[J]. 储能科学与技术, 2022, 11(11): 3681-3687. |
[12] | 吕艳宗, 韩冰, 王宏宇, 徐杨非, 张星. 基于空调的有轨电车动力电池热管理控制[J]. 储能科学与技术, 2022, 11(10): 3231-3238. |
[13] | 徐子杰, 王燕. 多孔基无机复合相变材料的蓄热特性[J]. 储能科学与技术, 2022, 11(10): 3171-3179. |
[14] | 安治国, 张显, 祝惠, 张春杰. 蜂窝状CPCM/水冷复合式圆柱型锂电池散热性能[J]. 储能科学与技术, 2022, 11(1): 211-220. |
[15] | 张晓光, 潘晓楠, 李金铭, 刘丽, 何燕. 电池排布对锂电池组相变热管理性能的影响[J]. 储能科学与技术, 2022, 11(1): 127-135. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||