1 |
JIANG Z, PALACIOS A, ZOU B Y, et al. A review on the fabrication methods for structurally stabilised composite phase change materials and their impacts on the properties of materials[J]. Renewable and Sustainable Energy Reviews, 2022, 159: doi:10.1016/j.rser.2022.112134.
|
2 |
姜竹, 邹博杨, 丛琳, 等. 储热技术研究进展与展望[J]. 储能科学与技术, 2022, 11(9): 2746-2771.
|
|
JIANG Z, ZOU B Y, CONG L, et al. Recent progress and outlook of thermal energy storage technologies[J]. Energy Storage Science and Technology, 2022, 11(9): 2746-2771.
|
3 |
JIANG Y F, SUN Y P, JACOB R D, et al. Novel Na2SO4-NaCl-ceramic composites as high temperature phase change materials for solar thermal power plants (Part I)[J]. Solar Energy Materials and Solar Cells, 2018, 178: 74-83.
|
4 |
LIU M Y, XU Y F, ZHANG X G, et al. Preparation and characterization of composite phase change materials based on lauric-myristic acid and expanded vermiculite with carbon layer[J]. ChemistrySelect, 2021, 6(16): 3884-3890.
|
5 |
XU G Z, LENG G H, YANG C Y, et al. Sodium nitrate-Diatomite composite materials for thermal energy storage[J]. Solar Energy, 2017, 146: 494-502.
|
6 |
王赛, 孙志高, 李娟, 等. 月桂酸/十四醇/二氧化硅定形相变材料的制备及性能研究[J]. 储能科学与技术, 2020, 9(6): 1768-1774.
|
|
WANG S, SUN Z G, LI J, et al. Preparation and properties of lauric acid/tetradecanol/SiO2 shape-stabilized phase change materials[J]. Energy Storage Science and Technology, 2020, 9(6): 1768-1774.
|
7 |
WANG T Y, ZHANG T Y, XU G Z, et al. A new low-cost high-temperature shape-stable phase change material based on coal fly ash and K2CO3[J]. Solar Energy Materials and Solar Cells, 2020, 206: doi: 10.1016/j.solmat.2019.110328.
|
8 |
王燕, 黄云, 姚华, 等. 太阳盐/钢渣定型复合相变储热材料的制备与性能研究[J]. 过程工程学报, 2021, 21(3): 332-340.
|
|
WANG Y, HUANG Y, YAO H, et al. Fabrication and characterization of form-stable solar salt/steel slag composite phase change material for thermal energy storage[J]. The Chinese Journal of Process Engineering, 2021, 21(3): 332-340.
|
9 |
ANAGNOSTOPOULOS A, NAVARRO M E, STEFANIDOU M, et al. Red mud-molten salt composites for medium-high temperature thermal energy storage and waste heat recovery applications[J]. Journal of Hazardous Materials, 2021, 413: doi: 10.1016/j.jhazmat.2021.125407.
|
10 |
徐婉怡, 王红霞, 崔小迷, 等. 电石制备清洁生产和工程化研究进展[J]. 化工进展, 2021, 40(10): 5337-5347.
|
|
XU W Y, WANG H X, CUI X M, et al. Research progress on cleaner production and engineering of calcium carbide preparation[J]. Chemical Industry and Engineering Progress, 2021, 40(10): 5337-5347.
|
11 |
YUAN Y, LI Y J, DUAN L B, et al. CaO/Ca(OH)2 thermochemical heat storage of carbide slag from calcium looping cycles for CO2 capture[J]. Energy Conversion and Management, 2018, 174: 8-19.
|
12 |
宋超宇, 熊亚选, 张金花, 等. 污泥焚烧炉渣基定型复合相变储热材料的制备和性能[J]. 化工学报, 2022, 73(5): 2279-2287.
|
|
SONG C Y, XIONG Y X, ZHANG J H, et al. Preparation and performance study of incinerated slag based shape-stable phase change composites[J]. CIESC Journal, 2022, 73(5): 2279-2287.
|
13 |
XIONG Y X, SUN M Y, WU Y T, et al. Effects of synthesis methods on thermal performance of nitrate salt nanofluids for concentrating solar power[J]. Energy & Fuels, 2020, 34(9): 11606-11619.
|
14 |
YU Q H, JIANG Z, CONG L, et al. A novel low-temperature fabrication approach of composite phase change materials for high temperature thermal energy storage[J]. Applied Energy, 2019, 237: 367-377.
|
15 |
XIONG Y X, WANG H X, WU Y T, et al. Carbide slag based shape-stable phase change materials for waste recycling and thermal energy storage[J]. Journal of Energy Storage, 2022, 50: doi:10.1016/j.est.2022.104256
|
16 |
JOSHI S, KALYANASUNDARAM S, BALASUBRAMANIAN V. Quantitative analysis of sodium carbonate and sodium bicarbonate in solid mixtures using Fourier transform infrared spectroscopy (FT-IR)[J]. Applied Spectroscopy, 2013, 67(8): 841-845.
|
17 |
YAN K Z, GUO Y X, FANG L, et al. Decomposition and phase transformation mechanism of kaolinite calcined with sodium carbonate[J]. Applied Clay Science, 2017, 147: 90-96.
|