储能科学与技术 ›› 2022, Vol. 11 ›› Issue (12): 3819-3827.doi: 10.19799/j.cnki.2095-4239.2022.0378

• 储能材料与器件 • 上一篇    下一篇

Na2CO3/电石渣复合相变储热材料制备与性能

王辉祥1(), 熊亚选1(), 任静2, 药晨华1, 宋超宇1, 吴玉庭3, 丁玉龙4   

  1. 1.北京建筑大学,供热供燃气通风及空调工程北京市重点实验室,北京 100044
    2.北京中建建筑科学研究院有限公司,北京 100076
    3.北京工业大学,传热强化与过程节能教育部重点
    1.实验室,北京 100124,英国伯明翰大学,伯明翰储能中心,英国 伯明翰 B
    2.实验室,北京 100124
    2.TT
  • 收稿日期:2022-07-04 修回日期:2022-07-14 出版日期:2022-12-05 发布日期:2022-12-29
  • 通讯作者: 熊亚选 E-mail:whx754137921@163.com;xiongyaxuan@bucea.edu.cn
  • 作者简介:王辉祥(1997—),男,硕士研究生,主要从事固体储热研究,E-mail:whx754137921@163.com
  • 基金资助:
    国家自然科学基金(52006008);北京市教委科研项目(KM201910016011)

Fabrication and performance investigation of Na2CO3/Carbide slag shape-stable phase change composites

Huixiang WANG1(), Yaxuan XIONG1(), Jing REN2, Chenhua YAO1, Chaoyu SONG1, Yuting WU3, Yulong DING4   

  1. 1.Beijing Key Lab of Heating, Gas Supply, Ventilating and Air Conditioning Engineering, Beijing University of Civil Engineering and Architecture, Beijing 100044, China
    2.Beijing Building Research Institute CO. , LTD. of CSCEC, Beijing 100076, China
    3.Key Laboratory of Enhanced Heat Transfer and Energy Conservation, Ministry of Education, Beijing University of Technology, Beijing 100124, China
    4.Birmingham Center for Energy storage, University of Birmingham, Birmingham B, UK
    5.2TT, UK
  • Received:2022-07-04 Revised:2022-07-14 Online:2022-12-05 Published:2022-12-29
  • Contact: Yaxuan XIONG E-mail:whx754137921@163.com;xiongyaxuan@bucea.edu.cn

摘要:

为循环利用工业固体废弃物,降低储热系统成本,以工业固废电石渣替代传统骨架材料,采用冷压烧结法创新制备7种不同配比的Na2CO3/电石渣复合相变储热材料,利用差示扫描量热法、恒速增压法、电子显微法、高温热冲击法、X射线衍射法、红外吸收光谱法等方法研究其储热性能、力学性能、微观结构、热循环稳定性和化学兼容性。结果表明,电石渣与碳酸钠结合可形成性能优异的复合相变储热材料;电石渣与碳酸钠质量比为52.5∶47.5时制备的复合相变储热材料(NC5)综合性能最佳,储热密度在100~900 ℃内达到993 J/g,抗压强度达到22.02 MPa,最高导热系数为0.62 W/(m·K);样品NC5中不同组分均匀分布,组分间具有良好的兼容性;样品NC5经100次加热/冷却循环后仍具有优异的储热性能,可为固废资源化利用和低成本储热材料研发提供技术支持。

关键词: 工业固废, 骨架材料, 复合相变储热材料, 储热性能, 热循环稳定性

Abstract:

This study innovatively fabricated seven Na2CO3/carbide slag shape-stable phase-change composites (SSPCCs) with carbide slag (industrial solid waste) instead of traditional skeleton materials as skeleton material via the cold-compression hot-sintering method to recycle the industrial solid waste and reduce the cost of thermal energy storage (TES) systems. Then, the TES performance, mechanical property, microstructure, thermal cycling stability, and chemical compatibility were investigated using the differential scanning calorimetry, constant-speed pressuring method, scanning electron microscopy method, high-temperature thermal shock method, X-ray diffraction analysis, and Fourier transform infrared absorption spectroscopy. Results indicated that by combining carbide slag with Na2CO3, one might create good SSPCCs. The SSPCC (sample NC5) with the mass fraction of 52.45% carbide slag to 47.5% Na2CO3 reached the optimal performance with a TES density of 993 J/g in the range of 100 ℃ to 900 ℃ and compressive strength of 22.02 MPa and a maximal thermal conductivity of 0.62 W/(m·K). Different components are distributed evenly and are compatible with one another in sample NC5. Moreover, sample NC5 still had excellent TES performance after the 100 heating/cooling cycles, which can provide technical support for solid waste recycling and low-cost TES materials development.

Key words: Industrial solid waste, skeleton material, shape-stable phase change composite, thermal energy storage performance, thermal cycling stability

中图分类号: