1 |
EDDAOUDI M , KIM J , ROSI N L , et al . Systematic design of pore size and functionality in isoreticular MOFs and their application in methane storage[J]. Science, 2002, 295(5554): 469-472.
|
2 |
RAGON F , CAMPO B , YANG Q , et al . Acid-functionalized UIO-66(Zr) MOFs and their evolution after intra-framework cross-linking: Structural features and sorption properties[J]. Journal of Materials Chemistry, 2015, 3(7): 3294-3309.
|
3 |
WANG W , YUAN Y , SUN F X , et al . Targeted synthesis of novel porous aromatic frameworks with selective separation of CO2/CH4 and CO2/N2 [J]. Chinese Chemical Letters, 2014, 25(11): 1407-1410.
|
4 |
ZHANG T , LIN W B . Metal-organic frameworks for artificial photosynthesis and photocatalysis[J]. Chemical Society Reviews, 2014, 43(16): 5982-5993.
|
5 |
WANG L , HAN Y Z , FENG X , et al . Metal-organic frameworks for energy storage: Batteries and supercapacitors[J]. Coordination Chemistry Reviews, 2016, 307: 361-381.
|
6 |
LI G H , YANG H , LI F C , et al . Facile formation of a nanostructured NiP2@C material for advanced lithium-ion battery anode using adsorption property of metal-organic framework[J]. Journal of Materials Chemistry, 2016, 4(24): 9593-9599.
|
7 |
FEREY G , MELLOTDRAZNIEKS C , SERRE C , et al . A chromium terephthalate-based solid with unusually large pore volumes and surface area[J]. Science, 2005, 309(5743): 2040-2042.
|
8 |
FEREY G , LATROCHE M , SERRE C , et al . Hydrogen adsorption in the nanoporous metal-benzenedicarboxylate M(OH)(O2C–C6H4–CO2)(M=Al3+, Cr3+), MIL-53[J]. Chemical Communications, 2003, 24: 2976-2977.
|
9 |
LI G H , LI F C , YANG H Y , et al . Graphene oxides doped MIL-101(Cr) as anode materials for enhanced electrochemistry performance of lithium ion battery[J]. Inorganic Chemistry Communications, 2016, 64: 63-66.
|
10 |
赵思维, 孙雪梅, 孙宇涵, 等 . 基于金属有机骨架材料为前驱物的锂电负极材料α-Fe2O3的合成及性能表征[J]. 科学技术与工程, 2016, 16(30): 1-5.
|
|
ZHAO Siwei , SUN Xuemei , SUN Yuhan , et al . Synthesis and electrochemical performance of α-Fe2O3 anode material based on MOF as precursor[J]. Science Technology and Engineering, 2016, 16(30): 1-5.
|
11 |
LI M C , WANG W X , YANG M Y , et al . Large-scale fabrication of porous carbon-decorated iron oxide microcuboids from Fe-MOF as high-performance anode materials for lithium-ion batteries[J]. RSC Advances, 2015, 5(10): 7356-7362.
|
12 |
HUANG G , ZHANG F F , ZHANG L L , et al . Hierarchical NiFe2O4/Fe2O3 nanotubes derived from metal organic frameworks for superior lithium ion battery anodes[J]. Journal of Materials Chemistry, 2014, 2(21): 8048-8053.
|
13 |
LUO Y M , SUN L X , XU F , et al . Porous carbon derived from metal-organic framework as an anode for lithium-ion batteries with improved performance[J]. Key Engineering Materials, 2017, 727: 705-711.
|
14 |
LI C , CHEN T Q , XU W J , et al . Mesoporous nanostructured Co3O4 derived from MOF template: A high-performance anode material for lithium-ion batteries[J]. Journal of Materials Chemistry, 2015, 3(10): 5585-5591.
|
15 |
BAI Z C , ZHANG Y H , ZHANG Y W , et al . MOFs-derived porous Mn2O3 as high-performance anode material for Li-ion battery[J]. Journal of Materials Chemistry, 2015, 3(10): 5266-5269.
|
16 |
QIU Y C , XU G L , YAN K Y , et al . Morphology-conserved transformation: Synthesis of hierarchical mesoporous nanostructures of Mn2O3 and the nanostructural effects on Li-ion insertion/deinsertion properties[J]. Journal of Materials Chemistry, 2011, 21(17): 6346-6353.
|
17 |
ZHANG X , QIAN Y T , ZHU Y C , et al . Synthesis of Mn2O3 nanomaterials with controllable porosity and thickness for enhanced lithium-ion batteries performance[J]. Nanoscale, 2014, 6(3): 1725-1731.
|
18 |
DENG Y F , LI Z , SHI Z N , et al . Porous Mn2O3 microsphere as a superior anode material for lithium ion batteries[J]. RSC Advances, 2012, 2(11): 4645-4647.
|
19 |
QU Q T , GAO T , ZHENG H Y , et al . Graphene oxides-guided growth of ultrafine Co3O4 nanocrystallites from MOFs as high-performance anode of Li-ion batteries[J]. Carbon, 2015, 92: 119-125.
|
20 |
LIU J , WU C , XIAO D D , et al . MOF-derived hollow Co9S8 nanoparticles embedded in graphitic carbon nanocages with superior Li-ion storage[J]. Small, 2016, 12(17): 2354-2364.
|
21 |
WANG Q F , ZOU R Q , XIA W , et al . Facile synthesis of ultrasmall CoS2 nanoparticles within thin N-doped porous carbon shell for high performance lithium-ion batteries[J]. Small, 2015, 11(21): 2511-2517.
|
22 |
YANG D H , ZHOU X L , ZHONG M , et al . A robust hybrid of SnO2 nanoparticles sheathed by N-doped carbon derived from ZIF-8 as anodes for Li ion batteries[J]. Chemnanomat, 2017, 3: doi: 10.1002/cnma. 201600371.
|
23 |
ZHANG L , WU H B , MADHAVI S , et al . Formation of Fe2O3 microboxes with hierarchical shell structures from metal-organic frameworks and their lithium storage properties[J]. Journal of the American Chemical Society, 2012, 134(42): 17388-17391.
|
24 |
YANG X , TANG Y B , HUANG X , et al . Lithium ion battery application of porous composite oxide microcubes prepared via metal-organic frameworks[J]. Journal of Power Sources, 2015, 284: 109-114.
|
25 |
LUO J S , XIA X H , LUO Y S , et al . Rationally designed hierarchical TiO2@Fe2O3 hollow nanostructures for improved lithium ion storage[J]. Advanced Energy Materials, 2013, 3(6): 737-743.
|
26 |
LI Z Q , LI B , YIN L W , et al . Prussion blue-supported annealing chemical reaction route synthesized double-shelled Fe2O3/Co3O4 hollow microcubes as anode materials for lithium-ion battery[J]. ACS Applied Materials & Interfaces, 2014, 6: doi: 10.1021/am500417j.
|
27 |
ABBAS S M , HUSSAIN S T , ALI S, et al . Modification of carbon nanotubes by CuO-doped NiO nanocomposite for use as an anode material for lithium-ion batteries[J]. Journal of Solid State Chemistry, 2013, 202: 43-50.
|
28 |
ZHENG F C , ZHU D Q , CHEN Q W , et al . MOF-derived self-assembled ZnO/Co3O4 nanocomposite clusters as high-performance anodes for lithium-ion batteries[J]. Dalton Transactions, 2015, 44(38): doi: 10.1039/c5dt02271a.
|
29 |
HUANG G , ZHANG L L , ZHANG F F , et al . Metal-organic framework derived Fe2O3@NiCo2O4 porous nanocages as anode materials for Li-ion batteries[J]. Nanoscale, 2014, 6(10): 5509-5515.
|
30 |
HAMEED A S , REDDY M V , CHOWDARI B V , et al . Carbon coated Li3V2(PO4)3 from the single-source precursor, Li2(VO)2(HPO4)2(C2O4)·6H2O as cathode and anode materials for lithium ion batteries[J]. Electrochimica Acta, 2014, 128: 184-191.
|
31 |
ZHANG Z Y , YOSHIKAWA H , AWAGA K , et al . Monitoring the solid-state electrochemistry of Cu(2, 7-AQDC) (AQDC=anthraquinone dicarboxylate) in a lithium battery: Coexistence of metal and ligand redox activities in a metal-organic framework[J]. Journal of the American Chemical Society, 2014, 136(46): 16112-16115.
|
32 |
SHIN J , KIM M , CIRERA J , et al . MIL-101(Fe) as a lithium-ion battery electrode material: A relaxation and intercalation mechanism during lithium insertion[J]. Journal of Materials Chemistry, 2015, 3(8): 4738-4744.
|
33 |
SHEN L , WANG Z X , CHEN L Q , et al . Prussian blues as a cathode material for lithium ion batteries[J]. Chemistry: A European Journal, 2014, 20(39): 12559-12562.
|