储能科学与技术 ›› 2020, Vol. 9 ›› Issue (1): 25-39.doi: 10.19799/j.cnki.2095-4239.2019.0179
收稿日期:
2019-08-02
修回日期:
2019-09-14
出版日期:
2020-01-05
发布日期:
2020-01-10
通讯作者:
王海燕
E-mail:sangnicc@163.com;wanghy419@126.com
作者简介:
张贺贺(1994—),男,硕士研究生,主要研究方向为钾离子电池负极材料,E-mail:基金资助:
ZHANG Hehe(), SUN Dan, WANG Haiyan(), TANG Yougen
Received:
2019-08-02
Revised:
2019-09-14
Online:
2020-01-05
Published:
2020-01-10
Contact:
Haiyan WANG
E-mail:sangnicc@163.com;wanghy419@126.com
摘要:
钾具有资源丰富、来源广泛,价格低廉的特点;在电化学体系中,钾具有较低的电极电势与较快的离子电导率,因此钾离子电池被认为是未来替代锂离子电池的理想储能体系。然而,由于钾离子的尺寸(1.38 ?,1 ?=10-10 m)远大于锂离子(0.76 ?),适用于锂离子电池的电极材料在嵌钾后会发生巨大的体积膨胀和结构破坏,难以满足实际应用的需要。近年来,为寻找适宜嵌钾的材料与抑制膨胀的方法,越来越多的电极材料体系被开发出来。本文综述了钾离子电池负极材料的研究进展,重点介绍了碳基材料(石墨、硬碳、软碳等),钛基材料,合金类材料,转化类材料以及有机化合物等体系的嵌钾机理与结构-性能关系,探讨了各体系材料存在的优势与缺陷;特别分析了存在于碳基材料的两种储钾机制(插层机制与赝电容机制)及各自对电化学性能的影响,指出了发生在电极表面的赝电容机制更适于钾离子的储存,并整理介绍了提高赝电容行为贡献量的方法。此外,展望了钾离子电池体系未来发展的方向和应用前景。
中图分类号:
张贺贺, 孙旦, 王海燕, 唐有根. 钾离子电池负极材料研究进展[J]. 储能科学与技术, 2020, 9(1): 25-39.
ZHANG Hehe, SUN Dan, WANG Haiyan, TANG Yougen. Current studies of anode materials for potassium-ion battery[J]. Energy Storage Science and Technology, 2020, 9(1): 25-39.
1 | CARMICHAEL R S . Practical handbook of physical properties of rocks and minerals (1988)[M]. Boca Raton: CRC Press, 2017. |
2 | GOONAN T G . Lithium use in batteries[M]. US Department of the Interior, US Geological Survey Reston, VA, 2012. |
3 | HE H , HUANG D , PANG W , et al . Plasma-induced amorphous shell and deep cation-sites doping endow TiO2 with extraordinary sodium storage performance[J]. Advanced Materials, 2018, 30(26): doi: 10.1002/adma.201801013. |
4 | ZHANG Q , FU L , LUAN J , et al . Surface engineering induced core-shell Prussian blue@ polyaniline nanocubes as a high-rate and long-life sodium-ion battery cathode[J]. Journal of Power Sources, 2018, 395: 305-313. |
5 | HE H , GAN Q , WANG H , et al . Structure-dependent performance of TiO2/C as anode material for Na-ion batteries[J]. Nano Energy, 2018, 44: 217-227. |
6 | SUN D , YE D , LIU P , et al . MoS2/graphene nanosheets from commercial bulky MoS2 and graphite as anode materials for high rate sodium-ion batteries[J]. Advanced Energy Materials, 2018, 8(10): doi: 10.1002/aenm.201702383. |
7 | MARCUS Y . Thermodynamic functions of transfer of single ions from water to nonaqueous and mixed solvents: Part 3-standard potentials of selected electrodes[J]. Pure and Applied Chemistry, 1985, 57(8): 1129-1132. |
8 | KOMABA S , HASEGAWA T , DAHBI M , et al . Potassium intercalation into graphite to realize high-voltage/high-power potassium-ion batteries and potassium-ion capacitors[J]. Electrochemistry Communications, 2015, 60: 172-175. |
9 | JIAN Z , LUO W , JI X . Carbon electrodes for K-ion batteries[J]. Journal of the American Chemical Society, 2015, 137(36): 11566-11569. |
10 | DOEFF M M , MA Y , VISCO S J , et al . Electrochemical insertion of sodium into carbon[J]. Journal of the Electrochemical Society, 1993, 140(12): L169-L170. |
11 | ZOU X , XIONG P , ZHAO J , et al . Recent research progress in nonaqueous potassium-ion batteries[J]. Physical Chemistry Chemical Physics, 2017, 19(39): 26495-26506. |
12 | 有色金属价格网 . 9月11日全国主要城市上海现货-小金属(镁锑锰铋铬钴镉钠钾钛锆铌钒铪铟)[EB/OL]. [2019-9-11]. https: //ys. zh818. com/view. aspx?id= 16736123. |
13 | TARGHOLI E , MOUSAVI-KHOSHDEL S M , RAHMANIFARA M , et al . Cu-and Fe-hexacyanoferrate as cathode materials for potassium ion battery: A first-principles study[J]. Chemical Physics Letters, 2017, 687: 244-249. |
14 | EFTEKHARI A . Potassium secondary cell based on Prussian blue cathode[J]. Journal of Power Sources, 2004, 126(1/2): 221-228. |
15 | XUE L , LI Y , GAO H , et al . Low-cost high-energy potassium cathode[J]. Journal of the American Chemical Society, 2017, 139(6): 2164-2167. |
16 | QIN M , REN W , MENG J , et al . Realizing superior Prussian blue positive electrode for potassium storage via ultrathin nanosheet assembly[J]. ACS Sustainable Chemistry & Engineering, 2019, 7(13): 11564-11570. |
17 | DENG L , YANG Z , TAN L , et al . Investigation of the Prussian blue analog Co3[Co(CN)6]2 as an anode material for nonaqueous potassium-ion batteries[J]. Advanced Materials, 2018, 30(31): doi: 10.1002/adma.201802510. |
18 | LIAO J Y , HU Q , ZOU B K , et al . The role of potassium ions in iron hexacyanoferrate as a cathode material for hybrid ion batteries[J]. Electrochimica Acta, 2016, 220: 114-121. |
19 | HIRONAKA Y , KUBOTA K , KOMABA S . P2-and P3-K x CoO2 as an electrochemical potassium intercalation host[J]. Chemical Communications, 2017, 53(26): 3693-3696. |
20 | KIM H , KIM J C , BO S H , et al . K-ion batteries based on a P2-type K0.6CoO2 cathode[J]. Advanced Energy Materials, 2017, 7(17): doi: 10.1002/aenm.201700098. |
21 | CHOI J U , KIM J , HWANG J Y , et al . K0.54[Co0.5Mn0.5]O2: New cathode with high power capability for potassium-ion batteries[J]. Nano Energy, 2019, 61: 284-294. |
22 | KIM H , SEO D H, URBAN A , et al . Stoichiometric layered potassium transition metal oxide for rechargeable potassium batteries[J]. Chemistry of Materials, 2018, 30(18): 6532-6539. |
23 | MATHEW V , KIM S , KANG J , et al . Amorphous iron phosphate: Potential host for various charge carrier ions[J]. NPG Asia Materials, 2014, 6(10): doi: 10.1038/am.2014.98. |
24 | HAN J , LI GN , LIU F , et al . Investigation of K3V2(PO4)3/C nanocomposites as high-potential cathode materials for potassium-ion batteries[J]. Chemical Communications, 2017, 53(11): 1805-1808. |
25 | WANG X , NIU C , MENG J , et al . Novel K3V2(PO4)3/C bundled nanowires as superior sodium-ion battery electrode with ultrahigh cycling stability[J]. Advanced Energy Materials, 2015, 5(17): doi: 10.1002/aenm.201500716. |
26 | LIN X , HUANG J , TAN H , et al . K3V2(PO4)2F3 as a robust cathode for potassium-ion batteries[J]. Energy Storage Materials, 2019, 16: 97-101. |
27 | PARK W B , HAN S C , PARK C , et al . KVP2O7 as a robust high-energy cathode for potassium-ion batteries: Pinpointed by a full screening of the inorganic registry under specific search conditions[J]. Advanced Energy Materials, 2018, 8(13): doi: 10.1002/aenm.201703099. |
28 | HOSAKA T , SHIMAMURA T , KUBOTA K , et al . Polyanionic compounds for potassium-ion batteries[J]. The Chemical Record, 2019, 19(4): 735-745. |
29 | HAN J , NIU Y , BAO S J , et al . Nanocubic KTi2(PO4)3 electrodes for potassium-ion batteries[J]. Chemical Communications, 2016, 52(78): 11661-11664. |
30 | CHEN Y , LUO W , CARTER M , et al . Organic electrode for nonaqueous potassium-ion batteries[J]. Nano Energy, 2015, 18: 205-211. |
31 | LI B , ZHAO J , ZHANG Z , et al . Electrolyte-regulated solid-electrolyte interphase enables long cycle life performance in organic cathodes for potassium-ion batteries[J]. Advanced Functional Materials, 2019, 29(5): doi: 10.1002/adfm.201807137. |
32 | XU Y S , DUAN S Y , SUN Y G , et al . Recent developments in electrode materials for potassium-ion batteries[J]. Journal of Materials Chemistry A, 2019, 7(9): 4334-4352. |
33 | 张鼎, 燕永旺, 史文静, 等 . 钾离子电池研究进展[J]. 化工进展, 2018, 37(10): 3772-3780. |
ZHANG Ding , YAN Yongwang , SHI Wenjing , et al . Research progress of potassium-ion batteries[J]. Chemical Industry and Engineering Progress, 2018, 37(10): 3772-3780. | |
34 | WENZEL S , HARA T , JANEK J , et al . Room-temperature sodium-ion batteries: Improving the rate capability of carbon anode materials by templating strategies[J]. Energy & Environmental Science, 2011, 4(9): 3342-3345. |
35 | WANG Z , SELBACH S M , GRANDE T . Van der Waals density functional study of the energetics of alkali metal intercalation in graphite[J]. RSC Advances, 2014, 4(8): 4069-4079. |
36 | WANG Z , RATVIK A P , GRANDE T , et al . Diffusion of alkali metals in the first stage graphite intercalation compounds by vdW-DFT calculations[J]. RSC Advances, 2015, 5(21): 15985-15992. |
37 | AN Y , FEI H , ZENG G , et al . Commercial expanded graphite as a low-cost, long-cycling life anode for potassium-ion batteries with conventional carbonate electrolyte[J]. Journal of Power Sources, 2018, 378: 66-72. |
38 | SHARE K , COHN A P , CARTER R , et al . Role of nitrogen-doped graphene for improved high-capacity potassium ion battery anodes[J]. ACS Nano, 2016, 10(10): 9738-9744. |
39 | JU Z , ZHANG S , XING Z , et al . Direct synthesis of few-layer F-doped graphene foam and its lithium/potassium storage properties[J]. ACS Applied Materials & Interfaces, 2016, 8(32): 20682-20690. |
40 | GONG S , WANG Q . Boron-doped graphene as a promising anode material for potassium-ion batteries with a large capacity, high rate performance, and good cycling stability[J]. The Journal of Physical Chemistry C, 2017, 121(44): 24418-24424. |
41 | MA G , HUANG K , MA J S , et al . Phosphorus and oxygen dual-doped graphene as superior anode material for room-temperature potassium-ion batteries[J]. Journal of Materials Chemistry A, 2017, 5(17): 7854-7861. |
42 | XING Z , QI Y , JIAN Z , et al . Polynanocrystalline graphite: A new carbon anode with superior cycling performance for K-ion batteries[J]. ACS Applied Materials & Interfaces, 2016, 9(5): 4343-4351. |
43 | LUO W , JIAN Z , XING Z , et al . Electrochemically expandable soft carbon as anodes for Na-ion batteries[J]. ACS Central Science, 2015, 1(9): 516-522. |
44 | LIU Y , FAN F , WANG J , et al . In situ transmission electron microscopy study of electrochemical sodiation and potassiation of carbon nanofibers[J]. Nano Letters, 2014, 14(6): 3445-3452. |
45 | ZHU S , LI J , DENG X , et al . Ultrathin-nanosheet-induced synthesis of 3d transition metal oxides networks for lithium ion battery anodes[J]. Advanced Functional Materials, 2017, 27(9): doi: 10.1002/adfm.201605017. |
46 | CHEN W , CHEN C , XIONG X , et al . Coordination of surface-induced reaction and intercalation: Toward a high-performance carbon anode for sodium-ion batteries[J]. Advanced Science, 2017, 4(6): doi: 10.1002/advs.201600500. |
47 | YANG F , ZHANG Z , DU K , et al . Dopamine derived nitrogen-doped carbon sheets as anode materials for high-performance sodium ion batteries[J]. Carbon, 2015, 91: 88-95. |
48 | XU Y , ZHANG C , ZHOU M , et al . Highly nitrogen doped carbon nanofibers with superior rate capability and cyclability for potassium ion batteries[J]. Nature Communications, 2018, 9(1): doi: 10.1038/S41467-018-04190-2. |
49 | LEI W , LIU S , ZHANG W H . Porous hollow carbon nanofibers derived from multi-walled carbon nanotubes and sucrose as anode materials for lithium-ion batteries[J]. RSC Advances, 2016, 7(1): 224-230. |
50 | WESTMAN K , DUGAS R , JANKOWSKI P , et al . Diglyme based electrolytes for sodium-ion batteries[J]. ACS Applied Energy Materials, 2018, 1(6): 2671-2680. |
51 | LU Z , BING L , YANG D , et al . A self-assembled silicon/phenolic resin-based carbon core-shell nanocomposite as an anode material for lithium-ion batteries[J]. RSC Advances, 2018, 8(7): 3477-3482. |
52 | DAHN J R , TAO Z , LIU Y , et al . Mechanisms for lithium insertion in carbonaceous materials[J]. Science, 1995, 270(5236): 590-593. |
53 | CONCHESO A , SANTAMARÍA R , GRANDA M , et al . Influence of oxidative stabilization on the electrochemical behaviour of coal tar pitch derived carbons in lithium batteries[J]. Electrochimica Acta, 2005, 50(5): 1225-1232. |
54 | HOU H , QIU X , WEI W , et al . Carbon anode materials for advanced sodium-ion batteries[J]. Advanced Energy Materials, 2017, 7(24): doi: 10.1002/aenm.201602898. |
55 | SAUREL D , ORAYECH B , XIAO B , et al . From charge storage mechanism to performance: A roadmap toward high specific energy sodium-ion batteries through carbon anode optimization[J]. Advanced Energy Materials, 2018, 8(17): doi: 10.1002/aenm.201703268. |
56 | BIN D S, LI Y , SUN Y G , et al . Structural engineering of multishelled hollow carbon nanostructures for high-performance Na-ion battery anode[J]. Advanced Energy Materials, 2018, 8(26): doi: 10.1002/aenm.201800855. |
57 | JIAN Z , HWANG S , LI Z , et al . Hard-soft composite carbon as a long-cycling and high-rate anode for potassium-ion batteries[J]. Advanced Functional Materials, 2017, 27(26): doi: 10.1002/adfm.201700324. |
58 | JIAN Z , XING Z , BOMMIER C , et al . Hard carbon microspheres: Potassium-ion anode versus sodium-ion anode[J]. Advanced Energy Materials, 2016, 6(3): doi: 10.1002/adem.201501874. |
59 | CHEN C , WANG Z , ZHANG B , et al . Nitrogen-rich hard carbon as a highly durable anode for high-power potassium-ion batteries[J]. Energy Storage Materials, 2017, 8: 161-168. |
60 | LIU L , CHEN Y , XIE Y , et al . Understanding of the ultrastable K-ion storage of carbonaceous anode[J]. Advanced Functional Materials, 2018, 28(29): doi: 10.1002/adfm.201801989. |
61 | CHOI C H , PARK S H , WOO S I . Binary and ternary doping of nitrogen, boron, and phosphorus into carbon for enhancing electrochemical oxygen reduction activity[J]. ACS Nano, 2012, 6(8): 7084-7091. |
62 | HE H , HUANG D , TANG Y , et al . Tuning nitrogen species in three-dimensional porous carbon via phosphorus doping for ultra-fast potassium storage[J]. Nano Energy, 2019, 57: 728-736. |
63 | CHEN M , WANG W , LIANG X , et al . Sulfur/oxygen codoped porous hard carbon microspheres for high-performance potassium-ion batteries[J]. Advanced Energy Materials, 2018, 8(19): doi: 10.1002/aenm.201800171. |
64 | YANG J , JU Z , JIANG Y , et al . Enhanced capacity and rate capability of nitrogen/oxygen dual-doped hard carbon in capacitive potassium-ion storage[J]. Advanced Materials, 2018, 30(4): doi: 10.1002/adma.201700104. |
65 | KISHORE B , VENKATESH G , MUNICHANDRAIAH N . K2Ti4O9: A promising anode material for potassium ion batteries[J]. Journal of the Electrochemical Society, 2016, 163(13): A2551-A2554. |
66 | DONG Y , WU Z S , ZHENG S , et al . Ti3C2 mxene-derived sodium/potassium titanate nanoribbons for high-performance sodium/potassium ion batteries with enhanced capacities[J]. ACS Nano, 2017, 11(5): 4792-4800. |
67 | HAN J , XU M , NIU Y , et al . Exploration of K2Ti8O17 as an anode material for potassium-ion batteries[J]. Chemical Communications, 2016, 52(75): 11274-11276. |
68 | WLEE G , PARK B H , NAZARIAN-SAMANI M , et al . Magnéli phase titanium oxide as a novel anode material for potassium-ion batteries[J]. ACS Omega, 2019, 4(3): 5304-5309. |
69 | LIAN P , DONG Y , WU Z S , Et al . Alkalized Ti3C2 mxene nanoribbons with expanded interlayer spacing for high-capacity sodium and potassium ion batteries[J]. Nano Energy, 2017, 40: 1-8. |
70 | WINTER M , BESENHARD J O . Electrochemical lithiation of tin and tin-based intermetallics and composites[J]. Electrochimica Acta, 1999, 45(1/2): 31-50. |
71 | MCCULLOCH W D , REN X , YU M , et al . Potassium-ion oxygen battery based on a high capacity antimony anode[J]. ACS Applied Materials & Interfaces, 2015, 7(47): 26158-26166. |
72 | SULTANA I , RAHMAN M M , RAMIREDDY T , et al . High capacity potassium-ion battery anodes based on black phosphorus[J]. Journal of Materials Chemistry A, 2017, 5(45): 23506-23512. |
73 | WANG Q , ZHAO X , NI C , et al . Reaction and capacity-fading mechanisms of tin nanoparticles in potassium-ion batteries[J]. The Journal of Physical Chemistry C, 2017, 121(23): 12652-12657. |
74 | WANG Z , DONG K , WANG D , et al . Nanosized SnSb alloy confined in N-doped 3D porous carbon coupling with ether-based electrolytes toward high-performance potassium-ion batteries[J]. Journal of Materials Chemistry A, 2019, 7: 14309-14318. |
75 | HUANG J , LIN X , TAN H , et al . Bismuth microparticles as advanced anodes for potassium-ion battery [J] Advanced Energy Materials, 2018, 8(19): doi: 10.1002/aenm.201703496. |
76 | LI D , SUN Q , ZHANG Y , et al . Surface-confined SnS2@C@rGO as high-performance anode materials for sodium-and potassium-ion batteries[J]. ChemSusChem, 2019, 12(12): 2689-2700. |
77 | WU Y , HU S , XU R , et al . Boosting potassium-ion battery performance by encapsulating red phosphorus in free-standing nitrogen-doped porous hollow carbon nanofibers[J]. Nano Letters, 2019, 19(2): 1351-1358. |
78 | HAN C , HAN K , WANG X , et al . Three-dimensional carbon network confined antimony nanoparticle anodes for high-capacity K-ion batteries[J]. Nanoscale, 2018, 10(15): 6820-6826. |
79 | ZHANG W , MAO J , LI S , et al . Phosphorus-based alloy materials for advanced potassium-ion battery anode[J]. Journal of the American Chemical Society, 2017, 139(9): 3316-3319. |
80 | ZHANG W , PANG W K , SENCADAS V , et al . Understanding high-energy-density Sn4P3 anodes for potassium-ion batteries[J]. Joule, 2018, 2(8): 1534-1547. |
81 | SULTANA I , RAHMAN M M , MATETI S , et al . K-ion and Na-ion storage performances of Co3O4-Fe2O3 nanoparticle-decorated super P carbon black prepared by a ball milling process[J]. Nanoscale, 2017, 9(10): 3646-3654. |
82 | LI P , ZHENG X , YU H , et al . Electrochemical potassium/lithium-ion intercalation into TiSe2: Kinetics and mechanism[J]. Energy Storage Materials, 2019, 16: 512-518. |
83 | GE J , FAN L , WANG J , et al . MoSe2/N-doped carbon as anodes for potassium-ion batteries[J]. Advanced Energy Materials, 2018, 8(29): doi: 10.1002/aenm.201801477. |
84 | LAKSHMI V , CHEN Y , MIKHAYLOV A A , et al . Nanocrystalline SnS2 coated onto reduced graphene oxide: Demonstrating the feasibility of a non-graphitic anode with sulfide chemistry for potassium-ion batteries[J]. Chemical Communications, 2017, 53(59): 8272-8275. |
85 | XIE K , YUAN K , LI X , et al . Superior potassium ion storage via vertical MoS2 “nano-rose” with expanded interlayers on graphene[J]. Small, 2017, 13(42): doi: 10.1002/smll.201701471. |
86 | SCHON T B , MCALLISTER B T , LI P-F , et al . The rise of organic electrode materials for energy storage[J]. Chemical Society Reviews, 2016, 45(22): 6345-6404. |
87 | MUENCH S , WILD A , FRIEBE C , et al . Polymer-based organic batteries[J]. Chemical Reviews, 2016, 116(16): 9438-9484. |
88 | LEI K , LI F , MU C , et al . High K-storage performance based on the synergy of dipotassium terephthalate and ether-based electrolytes[J]. Energy & Environmental Science, 2017, 10(2): 552-557. |
89 | FAN C , ZHAO M , LI C , et al . Investigating the electrochemical behavior of cobalt (ii) terephthalate (CoC8H4O4) as the organic anode in K-ion battery[J]. Electrochimica Acta, 2017, 253: 333-338. |
90 | LI C , DENG Q , TAN H , et al . Para-conjugated dicarboxylates with extended aromatic skeletons as the highly advanced organic anodes for K-ion battery[J]. ACS Applied Materials & Interfaces, 2017, 9(33): 27414-27420. |
[1] | 申晓宇, 岑官骏, 乔荣涵, 朱璟, 季洪祥, 田孟羽, 金周, 闫勇, 武怿达, 詹元杰, 俞海龙, 贲留斌, 刘燕燕, 黄学杰. 锂电池百篇论文点评(2022.4.1—2022.5.31)[J]. 储能科学与技术, 2022, 11(7): 2007-2022. |
[2] | 汪红辉, 吴泽钦, 储德韧. 轻度过放模式下钛酸锂电池性能及热安全性[J]. 储能科学与技术, 2022, 11(5): 1305-1313. |
[3] | 乔荣涵, 岑官骏, 申晓宇, 田孟羽, 季洪祥, 田丰, 起文斌, 金周, 武怿达, 詹元杰, 闫勇, 贲留斌, 俞海龙, 刘燕燕, 黄学杰. 锂电池百篇论文点评(2022.2.1—2022.3.31)[J]. 储能科学与技术, 2022, 11(5): 1289-1304. |
[4] | 周新宇, 栾道成, 胡志华, 凌俊华, 文科林, 刘浪, 阴志铭, 米书恒, 王正云. 含碳二元系相变储热材料储热性能分析选择[J]. 储能科学与技术, 2022, 11(4): 1175-1183. |
[5] | 刘倩楠, 胡伟平, 轷喆. 钠离子电池磷基负极材料研究进展[J]. 储能科学与技术, 2022, 11(4): 1201-1210. |
[6] | 岑官骏, 朱璟, 乔荣涵, 申晓宇, 季洪祥, 田孟羽, 田丰, 金周, 闫勇, 武怿达, 詹元杰, 俞海龙, 贲留斌, 刘燕燕, 黄学杰. 锂电池百篇论文点评(2021.12.1—2022.1.31)[J]. 储能科学与技术, 2022, 11(3): 1077-1092. |
[7] | 田孟羽, 朱璟, 岑官骏, 乔荣涵, 申晓宇, 季洪祥, 田丰, 金周, 闫勇, 武怿达, 詹元杰, 俞海龙, 贲留斌, 刘燕燕, 黄学杰. 锂电池百篇论文点评(2021.10.1—2021.11.30)[J]. 储能科学与技术, 2022, 11(1): 297-312. |
[8] | 李鹏辉, 吴彩文, 任建鹏, 吴文娟. 木质素作为锂离子电池电极材料的研究进展[J]. 储能科学与技术, 2022, 11(1): 66-77. |
[9] | 孙德旺, 蒋必志, 袁涛, 郑时有. 钛铌氧化物用于锂离子电池负极的研究进展[J]. 储能科学与技术, 2021, 10(6): 2127-2143. |
[10] | 韦守李, 李希超, 常修亮, 陈兵, 许卓, 张涛, 郑莉莉, 戴作强. 固体氧化物燃料电池双极板材料发展综述[J]. 储能科学与技术, 2021, 10(6): 1943-1951. |
[11] | 季洪祥, 金周, 田孟羽, 武怿达, 詹元杰, 田丰, 闫勇, 岑官骏, 乔荣涵, 申晓宇, 朱璟, 贲留斌, 俞海龙, 刘燕燕, 黄学杰. 锂电池百篇论文点评(2021.8.1—2021.9.30)[J]. 储能科学与技术, 2021, 10(6): 2411-2427. |
[12] | 戴兴建, 胡东旭, 张志来, 陈海生, 朱阳历. 高强合金钢飞轮转子材料结构分析与应用[J]. 储能科学与技术, 2021, 10(5): 1667-1673. |
[13] | 田丰, 季洪祥, 田孟羽, 乔荣涵, 岑官骏, 申晓宇, 武怿达, 詹元杰, 金周, 闫勇, 贲留斌, 俞海龙, 刘燕燕, 黄学杰. 锂电池百篇论文点评(2021.6.1—2021.7.31)[J]. 储能科学与技术, 2021, 10(5): 1854-1868. |
[14] | 岑官骏, 乔荣涵, 申晓宇, 田孟羽, 季洪祥, 田丰, 起文斌, 金周, 武怿达, 詹元杰, 闫勇, 贲留斌, 俞海龙, 刘燕燕, 黄学杰. 锂电池百篇论文点评(2021.4.1—2021.5.31)[J]. 储能科学与技术, 2021, 10(4): 1237-1252. |
[15] | 尹坚, 董季玲, 丁皓, 李方. 锂离子电池过渡金属氧化物负极材料研究进展[J]. 储能科学与技术, 2021, 10(3): 995-1001. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||