1 |
ALI D, MUKHOPADHYAY S, REHMAN H, et al. UAS based Li-ion battery model parameters estimation[J]. Control Engineering Practice, 2017, 66: 126-145.
|
2 |
ZHAO L H, LIU Z Y, JI G H. Lithium-ion battery state of charge estimation with model parameters adaptation using H∞ extended Kalman filter[J]. Control Engineering Practice, 2018, 81: 114-128.
|
3 |
汪伟, 黄河, 龙宇舟, 等. 基于改进安时积分法的动力电池SOC估算[J]. 客车技术与研究, 2021, 43(3): 12-14.
|
|
WANG W, HUANG H, LONG Y Z, et al. SOC estimation of power battery based on improved ampere-hour integration method[J]. Bus & Coach Technology and Research, 2021, 43(3): 12-14.
|
4 |
申彩英, 左凯. 基于开路电压法的磷酸铁锂电池SOC估算研究[J]. 电源技术, 2019, 43(11): 1789-1791.
|
|
SHEN C Y, ZUO K. Research on SOC estimation of LiFePO4 batteries based on open circuit voltage method[J]. Chinese Journal of Power Sources, 2019, 43(11): 1789-1791.
|
5 |
唐豪, 张振东, 吴兵. 基于BP神经网络的HPPC低温SOC优化估计[J]. 计算机系统应用, 2021, 30(6): 293-299.
|
|
TANG H, ZHANG Z D, WU B. Low temperature estimation of battery SOC based on BP neural network under HPPC conditions[J]. Computer Systems & Applications, 2021, 30(6): 293-299.
|
6 |
孙硕, 孙俊忠, 周智勇, 等. 基于MIV-GA-BP神经网络的铅酸蓄电池SOC预测[J]. 电源技术, 2021, 45(2): 228-231.
|
|
SUN S, SUN J Z, ZHOU Z Y, et al. SOC estimation of lead-acid battery based on MIV-GA-BP neural network[J]. Chinese Journal of Power Sources, 2021, 45(2): 228-231.
|
7 |
张凯. 基于粒子群算法优化SVM在电池SOC估算中的应用[J]. 机械工程与自动化, 2016(2): 154-155.
|
|
ZHANG K. Application of SVM based on particle swarm optimization algorithm in estimation of battery SOC[J]. Mechanical Engineering & Automation, 2016(2): 154-155.
|
8 |
陈德海, 王超, 朱正坤, 等. 交互多模型无迹卡尔曼滤波算法预测锂电池SOC[J]. 储能科学与技术, 2020, 9(1): 257-265.
|
|
CHEN D H, WANG C, ZHU Z K, et al. Lithium battery state-of-charge estimation based on interactive multimodel unscented Kalman filter Algorithm[J]. Energy Storage Science and Technology, 2020, 9(1): 257-265.
|
9 |
熊然, 王顺利, 于春梅, 等. 基于Thevenin模型和改进扩展卡尔曼的特种机器人锂离子电池SOC估算方法[J]. 储能科学与技术, 2021, 10(2): 695-704.
|
|
XIONG R, WANG S L, YU C M, et al. An estimation method for lithium-ion battery SOC of special robots based on Thevenin model and improved extended Kalman[J]. Energy Storage Science and Technology, 2021, 10(2): 695-704.
|
10 |
刘鑫蕊, 常鹏, 孙秋野. 基于XGBoost和无迹卡尔曼滤波自适应混合预测的电网虚假数据注入攻击检测[J]. 中国电机工程学报, 2021, 41(16): 5462-5476.
|
|
LIU X R, CHANG P, SUN Q Y. Grid false data injection attacks detection based on XGBoost and unscented Kalman filter adaptive hybrid prediction[J]. Proceedings of the CSEE, 2021, 41(16): 5462-5476.
|
11 |
熊瑞. 基于数据模型融合的电动车辆动力电池组状态估计研究[D]. 北京: 北京理工大学, 2014.
|
|
XIONG R. Estimation of battery pack state for electric vehicles using model-data fusion approach[D]. Beijing: Beijing Institute of Technology, 2014.
|