储能科学与技术 ›› 2022, Vol. 11 ›› Issue (3): 897-911.doi: 10.19799/j.cnki.2095-4239.2022.0007
收稿日期:
2022-01-05
修回日期:
2022-01-17
出版日期:
2022-03-05
发布日期:
2022-03-11
通讯作者:
霍锋
E-mail:ybw245583439@163.com;huofeng@ipe.ac.cn
作者简介:
岳博文(1999—),女,硕士研究生,主要研究方向为离子液体电解液分子模拟,E-mail:基金资助:
Bowen YUE1,2(), Jiahuan TONG2, Yuwen LIU1, Feng HUO2()
Received:
2022-01-05
Revised:
2022-01-17
Online:
2022-03-05
Published:
2022-03-11
Contact:
Feng HUO
E-mail:ybw245583439@163.com;huofeng@ipe.ac.cn
摘要:
电解液作为电化学储能系统的重要组成部分,是决定电池容量,支撑超级电容器储能、循环稳定性等特性的关键因素之一。离子液体作为一类新型软功能材料,因其高导电率、宽电化学窗口、良好的热稳定性、无显著蒸气压等特性,被广泛应用于电化学储能元件如锂电池、超级电容器等,逐步成为传统有机电解液最佳替代者之一。目前有关离子液体电解液的设计与研究大多采用实验测试法,其搜索范围大、成本高且难以从纳微水平精确获得对其动态结构、形成机理、作用机制等深刻认识。因此,本文综述了离子液体电解液在模拟计算方面的相关进展。首先根据不同的模拟尺度,介绍了用于离子液体电解液的3种模拟计算方法,并讨论了它们的优缺点。其次,按照离子液体在电解液中的不同组成部分,分别回顾了离子液体电池及超级电容器中的模拟研究现状。最后,讨论了离子液体电解液未来面临的挑战和发展方向,为电解液的模拟提供了新的研究思路。
中图分类号:
岳博文, 佟佳欢, 刘玉文, 霍锋. 离子液体电解液的模拟计算方法及应用[J]. 储能科学与技术, 2022, 11(3): 897-911.
Bowen YUE, Jiahuan TONG, Yuwen LIU, Feng HUO. Simulation calculation method and application of ionic liquid electrolyte[J]. Energy Storage Science and Technology, 2022, 11(3): 897-911.
1 | RAY A, SARUHAN B. Application of ionic liquids for batteries and supercapacitors[J]. Materials, 2021, 14(11): doi: 10.3390/ma14112942. |
2 | MARTINS V L, TORRESI R M. Ionic liquids in electrochemical energy storage[J]. Current Opinion in Electrochemistry, 2018, 9: 26-32. |
3 | JÓNSSON E. Ionic liquids as electrolytes for energy storage applications — A modelling perspective[J]. Energy Storage Materials, 2020, 25: 827-835. |
4 | LOURENÇO T C, ZHANG Y, COSTA L T, et al. A molecular dynamics study of lithium-containing aprotic heterocyclic ionic liquid electrolytes[J]. The Journal of Chemical Physics, 2018, 148(19): doi: 10.1063/1.5016276. |
5 | KIM E, HAN J, RYU S, et al. Ionic liquid electrolytes for electrochemical energy storage devices[J]. Materials, 2021, 14(14): doi: 10.3390/ma14144000. |
6 | DONG K, ZHANG S J, WANG J J. Understanding the hydrogen bonds in ionic liquids and their roles in properties and reactions[J]. Chemical Communications, 2016, 52(41): 6744-6764. |
7 | TSUZUKI S, SHINODA W, SAITO H, et al. Molecular dynamics simulations of ionic liquids: Cation and anion dependence of self-diffusion coefficients of ions[J]. The Journal of Physical Chemistry B, 2009, 113(31): 10641-10649. |
8 | NIU T T, CHAO L F, GAO W Y, et al. Ionic liquids-enabled efficient and stable perovskite photovoltaics: Progress and challenges[J]. ACS Energy Letters, 2021, 6(4): 1453-1479. |
9 | METWALLI E, KAEPPEL M V, SCHAPER S J, et al. Conductivity and morphology correlations of ionic-liquid/lithium-salt/block copolymer nanostructured hybrid electrolytes[J]. ACS Applied Energy Materials, 2018, 1(2): 666-675. |
10 | SHAN W D, YANG Q W, SU B G, et al. Proton microenvironment and interfacial structure of sulfonic-acid-functionalized ionic liquids[J]. The Journal of Physical Chemistry C, 2015, 119(35): 20379-20388. |
11 | HAKIM L, ISHII Y, MATSUMOTO K, et al. Transport properties of ionic liquid and sodium salt mixtures for sodium-ion battery electrolytes from molecular dynamics simulation with a self-consistent atomic charge determination[J]. The Journal of Physical Chemistry B, 2020, 124(33): 7291-7305. |
12 | CHEN F F, HOWLETT P, FORSYTH M. Na-ion solvation and high transference number in superconcentrated ionic liquid electrolytes: A theoretical approach[J]. The Journal of Physical Chemistry C, 2018, 122(1): 105-114. |
13 | RAJPUT N N, MONK J, HUNG F R. Structure and dynamics of an ionic liquid confined inside a charged slit graphitic nanopore[J]. The Journal of Physical Chemistry C, 2012, 116(27): 14504-14513. |
14 | SINGH R, MONK J, HUNG F R. Heterogeneity in the dynamics of the ionic liquid[BMIM+][PF6 –] confined in a slit nanopore[J]. The Journal of Physical Chemistry C, 2011, 115(33): 16544-16554. |
15 | CHENG T, MERINOV B V, MOROZOV S, et al. Quantum mechanics reactive dynamics study of solid Li-electrode/Li6PS5Cl-electrolyte interface[J]. ACS Energy Letters, 2017, 2(6): 1454-1459. |
16 | JIANG L W, LIU L L, YUE J M, et al. High-voltage aqueous Na-ion battery enabled by inert-cation-assisted water-in-salt electrolyte[J]. Advanced Materials, 2020, 32(2): doi: 10.1002/adma.201904427. |
17 | DUBNIKOVA F, ZEIRI Y. Structure, energies, and vibrational frequencies of solvated Li+ in ionic liquids: Role of cation type[J]. The Journal of Physical Chemistry A, 2016, 120(19): 3079-3087. |
18 | SODEYAMA K, YAMADA Y, AIKAWA K, et al. Sacrificial anion reduction mechanism for electrochemical stability improvement in highly concentrated Li-salt electrolyte[J]. The Journal of Physical Chemistry C, 2014, 118(26): 14091-14097. |
19 | HARPER A F, EVANS M L, DARBY J P, et al. Ab initio structure prediction methods for battery materials: A review of recent computational efforts to predict the atomic level structure and bonding in materials for rechargeable batteries[J]. Johnson Matthey Technology Review, 2020, 64(2): 103-118. |
20 | ONG S P, ANDREUSSI O, WU Y B, et al. Electrochemical windows of room-temperature ionic liquids from molecular dynamics and density functional theory calculations[J]. Chemistry of Materials, 2011, 23(11): 2979-2986. |
21 | MONTI D, JÓNSSON E, PALACÍN M R, et al. Ionic liquid based electrolytes for sodium-ion batteries: Na+ solvation and ionic conductivity[J]. Journal of Power Sources, 2014, 245: 630-636. |
22 | CLARKE-HANNAFORD J, BREEDON M, RÜTHER T, et al. Spectroscopic and computational study of boronium ionic liquids and electrolytes[J]. Chemistry, 2021, 27(50): 12826-12834. |
23 | ÅVALL G, MINDEMARK J, BRANDELL D, et al. Sodium-ion batteries: Sodium-ion battery electrolytes: Modeling and simulations[J]. Advanced Energy Materials, 2018, 8(17): doi: 10.1002/aenm. 201870081. |
24 | HE X F, ZHU Y Z, EPSTEIN A, et al. Statistical variances of diffusional properties from ab initio molecular dynamics simulations[J]. npj Computational Materials, 2018, 4:18. |
25 | MO Y F, ONG S P, CEDER G. First principles study of the Li10GeP2S12 lithium super ionic conductor material[J]. Chemistry of Materials, 2012, 24(1): 15-17. |
26 | VICENT-LUNA J M, ORTIZ-ROLDAN J M, HAMAD S, et al. Quantum and classical molecular dynamics of ionic liquid electrolytes for Na/Li-based batteries: Molecular origins of the conductivity behavior[J]. ChemPhysChem, 2016, 17(16): 2473-2481. |
27 | HE K, LIN F, ZHU Y Z, et al. Sodiation kinetics of metal oxide conversion electrodes: A comparative study with lithiation[J]. Nano Letters, 2015, 15(9): 5755-5763. |
28 | HE X F, ZHU Y Z, MO Y F. Origin of fast ion diffusion in super-ionic conductors[J]. Nature Communications, 2017, 8: doi: 10.1038/ncomms15893. |
29 | THOMAS M, BREHM M, HOLLÓCZKI O, et al. Simulating the vibrational spectra of ionic liquid systems: 1-ethyl-3-methylimidazolium acetate and its mixtures[J]. The Journal of Chemical Physics, 2014, 141(2): doi: 10.1063/1.4887082. |
30 | BEDROV D, PIQUEMAL J P, BORODIN O, et al. Molecular dynamics simulations of ionic liquids and electrolytes using polarizable force fields[J]. Chemical Reviews, 2019, 119(13): 7940-7995. |
31 | TONG J H, WU S L, SOLMS N, et al. The effect of concentration of lithium salt on the structural and transport properties of ionic liquid-based electrolytes[J]. Frontiers in Chemistry, 2020, 7: doi: 10.3389/fchem.2019.00945. |
32 | TONG J H, XIAO X Q, LIANG X D, et al. Insights into the solvation and dynamic behaviors of a lithium salt in organic- and ionic liquid-based electrolytes[J]. Physical Chemistry Chemical Physics: PCCP, 2019, 21(35): 19216-19225. |
33 | HU T Y, WANG Y L, HUO F, et al. Understanding structural and transport properties of dissolved Li2S8 in ionic liquid electrolytes through molecular dynamics simulations[J]. Chemphyschem, 2021, 22(4): 419-429. |
34 | 胡天媛, 王艳磊, 霍锋, 等. 短链多硫化物在离子液体中聚集行为的分子动力学模拟[J]. 过程工程学报, 2021, 21(7): 847-856. |
HU T Y, WANG Y L, HUO F, et al. Molecular dynamics simulations of short-chain lithium polysulfides clustering in ionic liquids[J]. The Chinese Journal of Process Engineering, 2021, 21(7): 847-856. | |
35 | RAY P, BALDUCCI A, KIRCHNER B. Molecular dynamics simulations of lithium-doped ionic-liquid electrolytes[J]. The Journal of Physical Chemistry B, 2018, 122(46): 10535-10547. |
36 | BORODIN O, SMITH G D, HENDERSON W. Li+ cation environment, transport, and mechanical properties of the LiTFSI doped N-methyl-N-alkylpyrrolidinium+TFSI- ionic liquids[J]. The Journal of Physical Chemistry B, 2006, 110(34): 16879-16886. |
37 | LI Z, SMITH G D, BEDROV D. Li+ solvation and transport properties in ionic liquid/lithium salt mixtures: A molecular dynamics simulation study[J]. The Journal of Physical Chemistry B, 2012, 116(42): 12801-12809. |
38 | VICENT-LUNA J M, AZACETA E, HAMAD S, et al. Molecular dynamics analysis of charge transport in ionic-liquid electrolytes containing added salt with mono, di, and trivalent metal cations[J]. Chemphyschem, 2018, 19(13): 1665-1673. |
39 | LESCH V, LI Z, BEDROV D, et al. The influence of cations on lithium ion coordination and transport in ionic liquid electrolytes: A MD simulation study[J]. Physical Chemistry Chemical Physics: PCCP, 2016, 18(1): 382-392. |
40 | LIU H J, MAGINN E. Effect of ion structure on conductivity in lithium-doped ionic liquid electrolytes: A molecular dynamics study[J]. The Journal of Chemical Physics, 2013, 139(11): doi: 10.1063/1.4821155. |
41 | BORODIN O, GIFFIN G A, MORETTI A, et al. Insights into the structure and transport of the lithium, sodium, magnesium, and zinc bis(trifluoromethansulfonyl) imide salts in ionic liquids[J]. The Journal of Physical Chemistry C, 2018, 122(35): 20108-20121. |
42 | KUBISIAK P, WRÓBEL P, EILMES A. Molecular dynamics investigation of correlations in ion transport in MeTFSI/EMIM-TFSI (Me = Li, Na) electrolytes[J]. The Journal of Physical Chemistry B, 2020, 124(2): 413-421. |
43 | TU K M, ISHIZUKA R, MATUBAYASI N. Spatial-decomposition analysis of electrical conductivity in concentrated electrolyte solution[J]. The Journal of Chemical Physics, 2014, 141(4): doi: 10.1002/tcr.201800116. |
44 | SCHRÖDER C, HABERLER M, STEINHAUSER O. On the computation and contribution of conductivity in molecular ionic liquids[J]. The Journal of Chemical Physics, 2008, 128(13): doi: 10.1063/1.2868752. |
45 | WOHDE F, BALABAJEW M, ROLING B. Li+Transference numbers in liquid electrolytes obtained by very-low-frequency impedance spectroscopy at variable electrode distances[J]. Journal of the Electrochemical Society, 2016, 163(5): A714-A721. |
46 | SHIGENOBU K, DOKKO K, WATANABE M, et al. Solvent effects on Li ion transference number and dynamic ion correlations in glyme- and sulfolane-based molten Li salt solvates[J]. Physical Chemistry Chemical Physics, 2020, 22(27): 15214-15221. |
47 | UENO K, YOSHIDA K, TSUCHIYA M, et al. Glyme-lithium salt equimolar molten mixtures: Concentrated solutions or solvate ionic liquids? [J]. The Journal of Physical Chemistry B, 2012, 116(36): 11323-11331. |
48 | MANDAI T, YOSHIDA K, TSUZUKI S, et al. Effect of ionic size on solvate stability of glyme-based solvate ionic liquids[J]. The Journal of Physical Chemistry B, 2015, 119(4): 1523-1534. |
49 | TERADA S, MANDAI T, NOZAWA R, et al. Physicochemical properties of pentaglyme-sodium bis (trifluoromethanesulfonyl) amide solvate ionic liquid[J]. Physical Chemistry Chemical Physics: PCCP, 2014, 16(23): 11737-11746. |
50 | TERADA S, MANDAI T, SUZUKI S, et al. Thermal and electrochemical stability of tetraglyme-magnesium bis (trifluoromethanesulfonyl) amide complex: Electric field effect of divalent cation on solvate stability[J]. The Journal of Physical Chemistry C, 2016, 120(3): 1353-1365. |
51 | SUO L M, BORODIN O, GAO T, et al. "Water-in-salt" electrolyte enables high-voltage aqueous lithium-ion chemistries[J]. Science, 2015, 350(6263): 938-943. |
52 | KO S, YAMADA Y, MIYAZAKI K, et al. Lithium-salt monohydrate melt: A stable electrolyte for aqueous lithium-ion batteries[J]. Electrochemistry Communications, 2019, 104: doi: 10.1016/j.elecom.2019.106488. |
53 | CHEN L, ZHANG J X, LI Q, et al. A 63 m superconcentrated aqueous electrolyte for high-energy Li-ion batteries[J]. ACS Energy Letters, 2020, 5(3): 968-974. |
54 | DOU Q Y, WANG Y, WANG A P, et al. "Water in salt/ionic liquid" electrolyte for 2.8 V aqueous lithium-ion capacitor[J]. Science Bulletin, 2020, 65(21): 1812-1822. |
55 | BECKER M, RENTSCH D, REBER D, et al. The hydrotropic effect of ionic liquids in water-in-salt electrolytes[J]. Angewandte Chemie International Edition, 2021, 60(25): 14100-14108. |
56 | JORALEECHANCHAI N, DUANGDANGCHOTE S, SAWANGPHRUK M. Insight into the effect of ionic liquid-based additives at the solid electrolyte interphase for lithium metal batteries[J]. Journal of the Electrochemical Society, 2021, 168(4): doi: 10.1149/1945-7111/abf7e3. |
57 | VATAMANU J, BORODIN O, BEDROV D, et al. Molecular dynamics simulation study of the interfacial structure and differential capacitance of alkylimidazolium bis(trifluoromethanesulfonyl) imide [Cnmim][TFSI] ionic liquids at graphite electrodes[J]. The Journal of Physical Chemistry C, 2012, 116(14): 7940-7951. |
58 | HU Z Z, VATAMANU J, BORODIN O, et al. A molecular dynamics simulation study of the electric double layer and capacitance of [BMIM][PF6] and [BMIM][BF4] room temperature ionic liquids near charged surfaces[J]. Physical Chemistry Chemical Physics: PCCP, 2013, 15(34): 14234-14247. |
59 | DEYOUNG A D, PARK S W, DHUMAL N R, et al. Graphene oxide supercapacitors: A computer simulation study[J]. The Journal of Physical Chemistry C, 2014, 118(32): 18472-18480. |
60 | NOH C, JUNG Y. Understanding the charging dynamics of an ionic liquid electric double layer capacitor via molecular dynamics simulations[J]. Physical Chemistry Chemical Physics: PCCP, 2019, 21(13): 6790-6800. |
61 | XU K, LIN Z F, MERLET C, et al. Tracking ionic rearrangements and interpreting dynamic volumetric changes in two-dimensional metal carbide supercapacitors: A molecular dynamics simulation study[J]. ChemSusChem, 2018, 11(12): 1892-1899. |
62 | OSTI N C, THOMPSON M W, VAN AKEN K L, et al. Humidity exposure enhances microscopic mobility in a room-temperature ionic liquid in MXene[J]. The Journal of Physical Chemistry C, 2018, 122(48): 27561-27566. |
63 | AKEN K L, MCDONOUGH J K, LI S, et al. Effect of cation on diffusion coefficient of ionic liquids at onion-like carbon electrodes[J]. Journal of Physics Condensed Matter, 2014, 26(28): doi: 10.1088/0953-8984/26/28/284104. |
64 | FENG G, LI S, PRESSER V, et al. Molecular insights into carbon supercapacitors based on room-temperature ionic liquids[J]. The Journal of Physical Chemistry Letters, 2013, 4(19): 3367-3376. |
65 | JIANG D E, WU J Z. Microscopic insights into the electrochemical behavior of nonaqueous electrolytes in electric double-layer capacitors[J]. The Journal of Physical Chemistry Letters, 2013, 4(8): 1260-1267. |
66 | BAÑUELOS J L, FENG G, FULVIO P F, et al. Densification of ionic liquid molecules within a hierarchical nanoporous carbon structure revealed by small-angle scattering and molecular dynamics simulation[J]. Chemistry of Materials, 2014, 26(2): 1144-1153. |
67 | WU P, HUANG J S, MEUNIER V, et al. Complex capacitance scaling in ionic liquids-filled nanopores[J]. ACS Nano, 2011, 5(11): 9044-9051. |
68 | GAN Z D, WANG Y L, WANG M, et al. Ionophobic nanopores enhancing the capacitance and charging dynamics in supercapacitors with ionic liquids[J]. Journal of Materials Chemistry A, 2021, 9(29): 15985-15992. |
69 | PÉAN C, MERLET C, ROTENBERG B, et al. On the dynamics of charging in nanoporous carbon-based supercapacitors[J]. ACS Nano, 2014, 8(2): 1576-1583. |
[1] | 李海涛, 孔令丽, 张欣, 余传军, 王纪威, 徐琳. N/P设计对高镍NCM/Gr电芯性能的影响[J]. 储能科学与技术, 2022, 11(7): 2040-2045. |
[2] | 姚祯, 张琦, 王锐, 刘庆华, 王保国, 缪平. 生物质衍生碳材料在全钒液流电池电极方面的应用[J]. 储能科学与技术, 2022, 11(7): 2083-2091. |
[3] | 时雨, 张忠, 杨晶莹, 钱薇, 李昊, 赵祥, 杨欣桐. 储能电池系统提供AGC调频的机会成本建模与市场策略[J]. 储能科学与技术, 2022, 11(7): 2366-2373. |
[4] | 王宇作, 卢颖莉, 邓苗, 杨斌, 于学文, 荆葛, 阮殿波. 超级电容器自放电的研究进展[J]. 储能科学与技术, 2022, 11(7): 2114-2125. |
[5] | 元佳宇, 李昕光, 王文超, 付程阔. 考虑质量流量的电池组蛇形冷却结构仿真[J]. 储能科学与技术, 2022, 11(7): 2274-2281. |
[6] | 刘显茜, 孙安梁, 田川. 基于仿生翅脉流道冷板的锂离子电池组液冷散热[J]. 储能科学与技术, 2022, 11(7): 2266-2273. |
[7] | 刘长洋, 卞刘振, 郜建全, 彭继华, 彭军, 安胜利. 固体氧化物燃料电池La0.7Sr0.3Fe0.9Ni0.1O3-δ 对称电极的电化学性能[J]. 储能科学与技术, 2022, 11(7): 2059-2065. |
[8] | 陈龙, 夏权, 任羿, 曹高萍, 邱景义, 张浩. 多物理场耦合下锂离子电池组可靠性研究现状与展望[J]. 储能科学与技术, 2022, 11(7): 2316-2323. |
[9] | 鲁志颖, 江杉, 李全龙, 马可心, 傅腾, 郑志刚, 刘志成, 李淼, 梁永胜, 董知非. 全钒液流电池在充电结束搁置阶段的开路电压变化[J]. 储能科学与技术, 2022, 11(7): 2046-2050. |
[10] | 黄鹏, 聂枝根, 陈峥, 舒星, 沈世全, 杨继鹏, 申江卫. 基于优化Elman神经网络的锂电池容量预测[J]. 储能科学与技术, 2022, 11(7): 2282-2294. |
[11] | 易顺民, 谢林柏, 彭力. 基于VF-DW-DFN的锂离子电池剩余寿命预测[J]. 储能科学与技术, 2022, 11(7): 2305-2315. |
[12] | 张肖洒, 王宏源, 李振彪, 夏志美. 废旧磷酸铁锂电池电极材料的硫酸化焙烧-水浸新工艺[J]. 储能科学与技术, 2022, 11(7): 2066-2074. |
[13] | 祝庆伟, 俞小莉, 吴启超, 徐一丹, 陈芬放, 黄瑞. 高能量密度锂离子电池老化半经验模型[J]. 储能科学与技术, 2022, 11(7): 2324-2331. |
[14] | 徐雄文, 聂阳, 涂健, 许峥, 谢健, 赵新兵. 普鲁士蓝正极软包钠离子电池的滥用性能[J]. 储能科学与技术, 2022, 11(7): 2030-2039. |
[15] | 王宇作, 王瑨, 卢颖莉, 阮殿波. 孔结构对软碳负极储锂性能的影响[J]. 储能科学与技术, 2022, 11(7): 2023-2029. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||