1 |
华经产业研究院.2022-2027年中国火力发电行业市场全景评估及发展战略研究报告[R/OL]. [2022-03-01]. https://m.huaon.com/detail/787124.html#chart.
|
2 |
XU Q, ZHAO T S, LEUNG P K. Numerical investigations of flow field designs for vanadium redox flow batteries[J]. Applied Energy, 2013, 105: 47-56.
|
3 |
KE X Y, PRAHL J M, ALEXANDER J I D, et al. Rechargeable redox flow batteries: Flow fields, stacks and design considerations[J]. Chemical Society Reviews, 2018, 47(23): 8721-8743.
|
4 |
LU M Y, DENG Y M, YANG W W, et al. A novel rotary serpentine flow field with improved electrolyte penetration and species distribution for vanadium redox flow battery[J]. Electrochimica Acta, 2020, 361: doi: 10.1016/j.electacta.2020.137089.
|
5 |
BODDU R, MARUPAKULA U K, SUMMERS B, et al. Development of bipolar plates with different flow channel configurations for fuel cells[J]. Journal of Power Sources, 2009, 189(2): 1083-1092.
|
6 |
KUMAR S, JAYANTI S. Effect of electrode intrusion on pressure drop and electrochemical performance of an all-vanadium redox flow battery[J]. Journal of Power Sources, 2017, 360: 548-558.
|
7 |
ZENG Y K, LI F H, LU F, et al. A hierarchical interdigitated flow field design for scale-up of high-performance redox flow batteries[J]. Applied Energy, 2019, 238: 435-441.
|
8 |
SUN J, ZHENG M L, YANG Z S, et al. Flow field design pathways from lab-scale toward large-scale flow batteries[J]. Energy, 2019, 173: 637-646.
|
9 |
HOUSER J, PEZESHKI A, CLEMENT J T, et al. Architecture for improved mass transport and system performance in redox flow batteries[J]. Journal of Power Sources, 2017, 351: 96-105.
|
10 |
HOUSER J, CLEMENT J, PEZESHKI A, et al. Influence of architecture and material properties on vanadium redox flow battery performance[J]. Journal of Power Sources, 2016, 302: 369-377.
|
11 |
ZHANG B W, LEI Y, BAI B F, et al. A two-dimensional model for the design of flow fields in vanadium redox flow batteries[J]. International Journal of Heat and Mass Transfer, 2019, 135: 460-469.
|
12 |
MAURYA S, NGUYEN P T, KIM Y S, et al. Effect of flow field geometry on operating current density, capacity and performance of vanadium redox flow battery[J]. Journal of Power Sources, 2018, 404: 20-27.
|
13 |
LIU B, TANG C W, JIANG H R, et al. Carboxyl-functionalized TEMPO catholyte enabling high-cycling-stability and high-energy-density aqueous organic redox flow batteries[J]. ACS Sustainable Chemistry & Engineering, 2021, 9(18): 6258-6265.
|
14 |
MARRACINO J M, COEURET F, LANGLOIS S. A first investigation of flow-through porous electrodes made of metallic felts or foams[J]. Electrochimica Acta, 1987, 32(9): 1303-1309.
|
15 |
WEI L, GUO Z X, SUN J, et al. A convection-enhanced flow field for aqueous redox flow batteries[J]. International Journal of Heat and Mass Transfer, 2021, 179: doi: 10.1016/j.ijheatmasstransfer.2021.121747.
|
16 |
SUN C N, DELNICK F M, AARON D S, et al. Resolving losses at the negative electrode in all-vanadium redox flow batteries using electrochemical impedance spectroscopy[J]. Journal of the Electrochemical Society, 2014, 161(6): A981-A988.
|
17 |
BECKER M, BREDEMEYER N, TENHUMBERG N, et al. Polarization curve measurements combined with potential probe sensing for determining current density distribution in vanadium redox-flow batteries[J]. Journal of Power Sources, 2016, 307: 826-833.
|