储能科学与技术 ›› 2022, Vol. 11 ›› Issue (5): 1563-1574.doi: 10.19799/j.cnki.2095-4239.2021.0528
收稿日期:
2021-10-12
修回日期:
2021-11-01
出版日期:
2022-05-05
发布日期:
2022-05-07
通讯作者:
阮琳
E-mail:wangjunucas@mail.iee.ac.cn;rosaline@mail.iee.ac.cn
作者简介:
王军(1996—),男,博士研究生,研究方向为电动汽车热管理技术,E-mail:wangjunucas@mail.iee.ac.cn;
Jun WANG1,2(), Lin RUAN1,2(), Yanliang QIU1,2
Received:
2021-10-12
Revised:
2021-11-01
Online:
2022-05-05
Published:
2022-05-07
Contact:
Lin RUAN
E-mail:wangjunucas@mail.iee.ac.cn;rosaline@mail.iee.ac.cn
摘要:
锂离子电池的性能直接影响电动汽车的续航、安全性和可靠性。低温环境下,锂离子电池功率特性变差、循环寿命衰减、可用容量降低,同时面临低温充电难、充电易析锂等问题,这些因素阻碍了电动汽车的发展。低温加热技术是电池热管理系统的核心技术之一,是缓解动力电池在低温环境下性能衰减的关键。本文综述了包括内部自加热法、MPH加热法、自加热锂离子电池、交流加热法等低温快速加热方法的最新研究进展,并总结了不同加热方法的加速速度、能量消耗、循环容量损失等关键性能参数。另外归纳了动力电池低温热管理系统的设计目标,并对不同加热方法性能进行比较分析。分析结果表明,交流加热法相比于其他方法更具优势,尤其在能量消耗、电池老化方面。最后,指出现有研究在电池老化机理、电池组/包层面加热策略方面的不足,并展望了未来的研究方向。本文内容有利于低温加热方法的发展和实际工程问题的解决,可为后续电动汽车动力电池的低温快速加热技术研究、低温热管理系统设计提供参考。
中图分类号:
王军, 阮琳, 邱彦靓. 锂离子电池低温快速加热方法研究进展[J]. 储能科学与技术, 2022, 11(5): 1563-1574.
Jun WANG, Lin RUAN, Yanliang QIU. Research progress on rapid heating methods for lithium-ion battery in low-temperature[J]. Energy Storage Science and Technology, 2022, 11(5): 1563-1574.
表1
低温快速加热方法总结"
加热方法 | 参考文献 | 电池容量 | 能量来源 | 能量消耗 | 加热速度/(℃/min) | 温差/℃ | 电池老化 |
---|---|---|---|---|---|---|---|
内部自加热法 | [ | 2.2 Ah | 电池 | 18% | 12 | — | — |
[ | 8 Ah | 电池 | 20% | 18.7 | — | 4.95%/2000次 | |
MPH加热法 | [ | 2.2 Ah | 电池 | 5% | 10.9 | — | — |
[ | 2.3 Ah | 电池 | 10% | 6.97 | — | — | |
自加热锂离子电池 | [ | 7.5 Ah | 电池 | 3.80% | 61.2 | — | — |
[ | 10 Ah | 电池 | 3.03% | 61.85 | 2.5 | — | |
交流加热法 | [ | 2.9 Ah | 外部电源 | — | 3.73 | — | 几乎没有/30次 |
[ | 35 Ah | 电池 | 6.64% | 2.29 | — | 几乎没有/600次 | |
[ | 3 Ah | 外部电源 | — | 2.21 | — | 1%/201次 | |
[ | 3 Ah | 外部电源 | — | 3.2 | — | — |
1 | TEIXEIRA A C R, SODRÉ J R. Impacts of replacement of engine powered vehicles by electric vehicles on energy consumption and CO2 emissions[J]. Transportation Research Part D: Transport and Environment, 2018, 59: 375-384. |
2 | MAHMOUDZADEH A A, PESIRIDIS A, RAJOO S, et al. A review of battery electric vehicle technology and readiness levels[J]. Renewable and Sustainable Energy Reviews, 2017, 78: 414-430. |
3 | LIU T, HU X S, LI S E, et al. Reinforcement learning optimized look-ahead energy management of a parallel hybrid electric vehicle[J]. IEEE/ASME Transactions on Mechatronics, 2017, 22(4): 1497-1507. |
4 | HU X S, ZHENG Y S, HOWEY D A, et al. Battery warm-up methodologies at subzero temperatures for automotive applications: Recent advances and perspectives[J]. Progress in Energy and Combustion Science, 2020, 77: doi:10.1016/j.pecs.2019.100806. |
5 | 朱建功, 孙泽昌, 魏学哲, 等. 车用锂离子电池低温特性与加热方法研究进展[J]. 汽车工程, 2019, 41(5): 571-581, 589. |
ZHU J G, SUN Z C, WEI X Z, et al. Research progress on low-temperature characteristics and heating techniques of vehicle lithium-ion battery[J]. Automotive Engineering, 2019, 41(5): 571-581, 589. | |
6 | HU X S, ZOU C F, ZHANG C P, et al. Technological developments in batteries: A survey of principal roles, types and management needs[J]. IEEE Power and Energy Magazine, 2017, 15(5): 20-31. |
7 | NITTA N, WU F X, LEE J T, et al. Li-ion battery materials: Present and future[J]. Materials Today, 2015, 18(5): 252-264. |
8 | SONG Z Y, HOFMANN H, LI J Q, et al. The optimization of a hybrid energy storage system at subzero temperatures: Energy management strategy design and battery heating requirement analysis[J]. Applied Energy, 2015, 159: 576-588. |
9 | RATNAKUMAR B V, SMART M C, SURAMPUDI S. Effects of SEI on the kinetics of lithium intercalation[J]. Journal of Power Sources, 2001, 97/98: 137-139. |
10 | SENYSHYN A, MÜHLBAUER M J, DOLOTKO O, et al. Low-temperature performance of Li-ion batteries: The behavior of lithiated graphite[J]. Journal of Power Sources, 2015, 282: 235-240. |
11 | NOBILI F, MANCINI M, DSOKE S, et al. Low-temperature behavior of graphite-tin composite anodes for Li-ion batteries[J]. Journal of Power Sources, 2010, 195(20): 7090-7097. |
12 | CHO H M, CHOI W S, GO J Y, et al. A study on time-dependent low temperature power performance of a lithium-ion battery[J]. Journal of Power Sources, 2012, 198: 273-280. |
13 | ZHANG S S, XU K, JOW T R. Charge and discharge characteristics of a commercial LiCoO2-based 18650 Li-ion battery[J]. Journal of Power Sources, 2006, 160(2): 1403-1409. |
14 | LI Z, HUANG J, YANN LIAW B, et al. A review of lithium deposition in lithium-ion and lithium metal secondary batteries[J]. Journal of Power Sources, 2014, 254: 168-182. |
15 | OUYANG M G, CHU Z Y, LU L G, et al. Low temperature aging mechanism identification and lithium deposition in a large format lithium iron phosphate battery for different charge profiles[J]. Journal of Power Sources, 2015, 286: 309-320. |
16 | ZHU G L, WEN K C, LV W Q, et al. Materials insights into low-temperature performances of lithium-ion batteries[J]. Journal of Power Sources, 2015, 300: 29-40. |
17 | 雷治国, 张承宁, 雷学国, 等. 电传动车辆用锂离子电池组低温加热方法研究[J]. 电源学报, 2016, 14(1): 102-108. |
LEI Z G, ZHANG C N, LEI X G, et al. Study on heating method of lithium-ion battery used in electric vehicle[J]. Journal of Power Supply, 2016, 14(1): 102-108. | |
18 | 罗玉涛, 郎春艳, 罗卜尔思. 低温环境下锂离子电池组加热系统研究[J]. 华南理工大学学报(自然科学版), 2016, 44(9): 100-106. |
LUO Y T, LANG C Y, LUO B. Investigation into heating system of lithium-ion battery pack in low-temperature environment[J]. Journal of South China University of Technology (Natural Science Edition), 2016, 44(9): 100-106. | |
19 | 李罡, 黄向东, 符兴锋, 等. 液冷动力电池低温加热系统设计研究[J]. 湖南大学学报(自然科学版), 2017, 44(2): 26-33. |
LI G, HUANG X D, FU X F, et al. Design research on battery heating and preservation system based on liquid cooling mode[J]. Journal of Hunan University (Natural Sciences), 2017, 44(2): 26-33. | |
20 | WANG Q, JIANG B, LI B, et al. A critical review of thermal management models and solutions of lithium-ion batteries for the development of pure electric vehicles[J]. Renewable and Sustainable Energy Reviews, 2016, 64: 106-128. |
21 | JI Y, WANG C Y. Heating strategies for Li-ion batteries operated from subzero temperatures[J]. Electrochimica Acta, 2013, 107: 664-674. |
22 | RUAN H J, JIANG J C, SUN B X, et al. An optimal internal-heating strategy for lithium-ion batteries at low temperature considering both heating time and lifetime reduction[J]. Applied Energy, 2019, 256: doi:10.1016/j.apenergy.2019.113797. |
23 | WU X G, CHEN Z, WANG Z Y. Analysis of low temperature preheating effect based on battery temperature-rise model[J]. Energies, 2017, 10(8): 1121. |
24 | DU J Y, CHEN Z, LI F Q. Multi-objective optimization discharge method for heating lithium-ion battery at low temperatures[J]. IEEE Access, 2018, 6: 44036-44049. |
25 | MOHAN S, SIEGEL J, STEFANOPOULOU A G, et al. Synthesis of an energy-optimal self-heating strategy for Li-ion batteries[J]. 2016 IEEE 55th Conference on Decision and Control (CDC), 2016: 1589-1594. |
26 | MOHAN S, SIEGEL J B, STEFANOPOULOU A G, et al. An energy-optimal warm-up strategy for Li-ion batteries and its approximations[J]. IEEE Transactions on Control Systems Technology, 2019, 27(3): 1165-1180. |
27 | RUAN H J, SUN B X, ZHU T, et al. Compound self-heating strategies and multi-objective optimization for lithium-ion batteries at low temperature[J]. Applied Thermal Engineering, 2021, 186: doi:10.1016/j.applthermaleng.2020.116158. |
28 | MOHAN S, KIM Y, STEFANOPOULOU A G. Energy-conscious warm-up of Li-ion cells from subzero temperatures[J]. IEEE Transactions on Industrial Electronics, 2016, 63(5): 2954-2964. |
29 | MOHANY S, KIM Y, STEFANOPOULOU A G, et al. On the warmup of Li-ion cells from sub-zero temperatures[C]//2014 American Control Conference. June 4-6, 2014, Portland, OR, USA. IEEE, 2014: 1547-1552. |
30 | WU X G, CUI Z H, CHEN E S, et al. Capacity degradation minimization oriented optimization for the pulse preheating of lithium-ion batteries under low temperature[J]. Journal of Energy Storage, 2020, 31: doi:10.1016/j.est.2020.101746. |
31 | WANG C Y, ZHANG G, GE S, et al. Lithium-ion battery structure that self-heats at low temperatures [J]. Nature, 2016, 529 (7587): 515-518. |
32 | ZHANG G S, GE S H, YANG X G, et al. Rapid restoration of electric vehicle battery performance while driving at cold temperatures[J]. Journal of Power Sources, 2017, 371: 35-40. |
33 | WANG C Y, XU T, GE S H, et al. A fast rechargeable lithium-ion battery at subfreezing temperatures[J]. Journal of the Electrochemical Society, 2016, 163(9): A1944-A1950. |
34 | YANG X G, ZHANG G S, WANG C Y. Computational design and refinement of self-heating lithium ion batteries[J]. Journal of Power Sources, 2016, 328: 203-211. |
35 | LEI Z G, ZHANG Y W, LEI X G. Improving temperature uniformity of a lithium-ion battery by intermittent heating method in cold climate[J]. International Journal of Heat and Mass Transfer, 2018, 121: 275-281. |
36 | YANG X G, LIU T, WANG C Y. Innovative heating of large-size automotive Li-ion cells[J]. Journal of Power Sources, 2017, 342: 598-604. |
37 | LEI Z G, ZHANG Y W, LEI X G. Temperature uniformity of a heated lithium-ion battery cell in cold climate[J]. Applied Thermal Engineering, 2018, 129: 148-154. |
38 | STUART T A, HANDE A. HEV battery heating using AC currents[J]. Journal of Power Sources, 2004, 129(2): 368-378. |
39 | HANDE A, STUART T A. AC heating for EV/HEV batteries[C]//Power Electronics in Transportation, 2002. October 24-25, 2002, Auburn Hills, MI, USA. IEEE, 2002: 119-124. |
40 | ZHANG J B, GE H, LI Z, et al. Internal heating of lithium-ion batteries using alternating current based on the heat generation model in frequency domain[J]. Journal of Power Sources, 2015, 273: 1030-1037. |
41 | RUAN H J, JIANG J C, SUN B X, et al. A rapid low-temperature internal heating strategy with optimal frequency based on constant polarization voltage for lithium-ion batteries[J]. Applied Energy, 2016, 177: 771-782. |
42 | JIANG J C, RUAN H J, SUN B X, et al. A reduced low-temperature electro-thermal coupled model for lithium-ion batteries[J]. Applied Energy, 2016, 177: 804-816. |
43 | LI J Q, SUN D N. Lithium-ion batteries modeling and optimization strategies for sinusoidal alternating current heating at low temperature[J]. Energy Procedia, 2018, 152: 562-567. |
44 | LI J Q, SUN D N, CHAI Z X, et al. Sinusoidal alternating current heating strategy and optimization of lithium-ion batteries with a thermo-electric coupled model[J]. Energy, 2019, 186: doi:10.1016/j.energy.2019.07.128. |
45 | ZHANG L, FAN W T, WANG Z P, et al. Battery heating for lithium-ion batteries based on multi-stage alternative currents[J]. Journal of Energy Storage, 2020, 32: doi:10.1016/j.est.2020.101885. |
46 | SHANG Y L, LIU K L, CUI N X, et al. A sine-wave heating circuit for automotive battery self-heating at subzero temperatures[J]. IEEE Transactions on Industrial Informatics, 2020, 16(5): 3355-3365. |
47 | SHANG Y L, ZHU C, LU G P, et al. Modeling and analysis of high-frequency alternating-current heating for lithium-ion batteries under low-temperature operations[J]. Journal of Power Sources, 2020, 450: doi:10.1016/j.jpowsour.2019.227435. |
48 | GE H, HUANG J, ZHANG J B, et al. Temperature-adaptive alternating current preheating of lithium-ion batteries with lithium deposition prevention[J]. Journal of the Electrochemical Society, 2015, 163(2): A290-A299. |
49 | GUO S S, XIONG R, WANG K, et al. A novel echelon internal heating strategy of cold batteries for all-climate electric vehicles application[J]. Applied Energy, 2018, 219: 256-263. |
50 | GUO S S, XIONG R, SHEN W X, et al. Aging investigation of an echelon internal heating method on a three-electrode lithium ion cell at low temperatures[J]. Journal of Energy Storage, 2019, 25: doi:10.1016/j.est.2019.100878. |
51 | JIANG J C, RUAN H J, SUN B X, et al. A low-temperature internal heating strategy without lifetime reduction for large-size automotive lithium-ion battery pack[J]. Applied Energy, 2018, 230: 257-266. |
52 | SUN J L, LI X Y, WEI G, et al. Low current rate discharge with external heating at low temperature[J]. 2015 IEEE Vehicle Power and Propulsion Conference (VPPC), 2015: 1-5. |
53 | 熊瑞, 王侃, 郭姗姗. 锂离子动力电池低温复合加热方法[J]. 机械工程学报, 2019, 55(14): 53-59. |
XIONG R, WANG K, GUO S S. Hybrid preheating method for lithium-ion battery used in cold environment[J]. Journal of Mechanical Engineering, 2019, 55(14): 53-59. | |
54 | LI Y L, GAO X L, QIN Y D, et al. Drive circuitry of an electric vehicle enabling rapid heating of the battery pack at low temperatures[J]. iScience, 2021, 24(1): doi:10.1016/j.isci.2020.101921. |
55 | ZHU J G, SUN Z C, WEI X Z, et al. An alternating current heating method for lithium-ion batteries from subzero temperatures[J]. International Journal of Energy Research, 2016, 40(13): 1869-1883. |
56 | ZHU J G, SUN Z C, WEI X Z, et al. Experimental investigations of an AC pulse heating method for vehicular high power lithium-ion batteries at subzero temperatures[J]. Journal of Power Sources, 2017, 367: 145-157. |
57 | NELSON P, DEES D, AMINE K, et al. Modeling thermal management of lithium-ion PNGV batteries[J]. Journal of Power Sources, 2002, 110(2): 349-356. |
58 | MIN H T, ZHANG Z P, SUN W Y, et al. A thermal management system control strategy for electric vehicles under low-temperature driving conditions considering battery lifetime[J]. Applied Thermal Engineering, 2020, 181: doi:10.1016/j.applthermaleng.2020.115944. |
59 | LIANG J L, GAN Y H, YAO M L, et al. Numerical analysis of capacity fading for a LiFePO4 battery under different current rates and ambient temperatures[J]. International Journal of Heat and Mass Transfer, 2021, 165: doi:10.1016/j.ijheatmasstransfer.2020.120615. |
60 | FLECKENSTEIN M, BOHLEN O, ROSCHER M A, et al. Current density and state of charge inhomogeneities in Li-ion battery cells with LiFePO4 as cathode material due to temperature gradients[J]. Journal of Power Sources, 2011, 196(10): 4769-4778. |
61 | TROXLER Y, WU B, MARINESCU M, et al. The effect of thermal gradients on the performance of lithium-ion batteries[J]. Journal of Power Sources, 2014, 247: 1018-1025. |
62 | 姜水生, 何志坚, 文华. 基于电-热耦合模型的锂离子电池组热管理系统设计与优化[J]. 中国机械工程, 2018, 29(15): 1847-1853. |
JIANG S S, HE Z J, WEN H. Design and optimization of thermal management systems for lithium-ion battery module based on electro-thermal model[J]. China Mechanical Engineering, 2018, 29(15): 1847-1853. | |
63 | SIRUVURI S D V S S V, BUDARAPU P R. Studies on thermal management of lithium-ion battery pack using water as the cooling fluid[J]. Journal of Energy Storage, 2020, 29: doi:10.1016/j.est.2020.101377. |
[1] | 李海涛, 孔令丽, 张欣, 余传军, 王纪威, 徐琳. N/P设计对高镍NCM/Gr电芯性能的影响[J]. 储能科学与技术, 2022, 11(7): 2040-2045. |
[2] | 刘显茜, 孙安梁, 田川. 基于仿生翅脉流道冷板的锂离子电池组液冷散热[J]. 储能科学与技术, 2022, 11(7): 2266-2273. |
[3] | 陈龙, 夏权, 任羿, 曹高萍, 邱景义, 张浩. 多物理场耦合下锂离子电池组可靠性研究现状与展望[J]. 储能科学与技术, 2022, 11(7): 2316-2323. |
[4] | 易顺民, 谢林柏, 彭力. 基于VF-DW-DFN的锂离子电池剩余寿命预测[J]. 储能科学与技术, 2022, 11(7): 2305-2315. |
[5] | 祝庆伟, 俞小莉, 吴启超, 徐一丹, 陈芬放, 黄瑞. 高能量密度锂离子电池老化半经验模型[J]. 储能科学与技术, 2022, 11(7): 2324-2331. |
[6] | 王宇作, 王瑨, 卢颖莉, 阮殿波. 孔结构对软碳负极储锂性能的影响[J]. 储能科学与技术, 2022, 11(7): 2023-2029. |
[7] | 武光华, 李宏胜, 李飞, 陈博, 张世科. 考虑时间相关性的电动汽车全生命周期碳排放量预测[J]. 储能科学与技术, 2022, 11(7): 2206-2212. |
[8] | 孔为, 金劲涛, 陆西坡, 孙洋. 对称蛇形流道锂离子电池冷却性能[J]. 储能科学与技术, 2022, 11(7): 2258-2265. |
[9] | 霍思达, 薛文东, 李新丽, 李勇. 基于CiteSpace知识图谱的锂电池复合电解质可视化分析[J]. 储能科学与技术, 2022, 11(7): 2103-2113. |
[10] | 邓健想, 赵金良, 黄成德. 高能量锂离子电池硅基负极黏结剂研究进展[J]. 储能科学与技术, 2022, 11(7): 2092-2102. |
[11] | 欧宇, 侯文会, 刘凯. 锂离子电池中的智能安全电解液研究进展[J]. 储能科学与技术, 2022, 11(6): 1772-1787. |
[12] | 韩俊伟, 肖菁, 陶莹, 孔德斌, 吕伟, 杨全红. 致密储能:基于石墨烯的方法学和应用实例[J]. 储能科学与技术, 2022, 11(6): 1865-1873. |
[13] | 辛耀达, 李娜, 杨乐, 宋维力, 孙磊, 陈浩森, 方岱宁. 锂离子电池植入传感技术[J]. 储能科学与技术, 2022, 11(6): 1834-1846. |
[14] | 燕乔一, 吴锋, 陈人杰, 李丽. 锂离子电池负极石墨回收处理及资源循环[J]. 储能科学与技术, 2022, 11(6): 1760-1771. |
[15] | 沈秀, 曾月劲, 李睿洋, 李佳霖, 李伟, 张鹏, 赵金保. γ射线辐照交联原位固态化阻燃锂离子电池[J]. 储能科学与技术, 2022, 11(6): 1816-1821. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||