1 |
邓章, 安保林, 陈嘉祥, 等. 低温高压液态空气储能系统分析[J]. 低温与超导, 2017, 45(5): 7-10, 43.
|
|
DENG Z, AN B L, CHEN J X, et al. Thermodynamic analysis of a cryogenic liquid air energy storage system in high-pressure state[J]. Cryogenics & Superconductivity, 2017, 45(5): 7-10, 43.
|
2 |
LIU Z, GUAN D, WEI W, et al. Reduced carbon emission estimates from fossil fuel combustion and cement production in China[J]. Nature,2015,524(7565):335-338.
|
3 |
PENG H, ZHANG D, LING X, et al. N-alkanes phase change materials and their microencapsulation for thermal energy storage: A critical review[J]. Energy & Fuels, 2018, 32(7): 7262-7293.
|
4 |
LEE I, PARK J, YOU F Q, et al. A novel cryogenic energy storage system with LNG direct expansion regasification: Design, energy optimization, and exergy analysis[J]. Energy, 2019, 173: 691-705.
|
5 |
KRAWCZYK P, SZABŁOWSKI Ł, KARELLAS S, et al. Comparative thermodynamic analysis of compressed air and liquid air energy storage systems[J]. Energy, 2018, 142: 46-54.
|
6 |
GEORGIOU S, SHAH N, MARKIDES C N. A thermo-economic analysis and comparison of pumped-thermal and liquid-air electricity storage systems[J]. Applied Energy, 2018, 226: 1119-1133.
|
7 |
GUIZZI G L, MANNO M, TOLOMEI L M, et al. Thermodynamic analysis of a liquid air energy storage system[J]. Energy, 2015, 93: 1639-1647.
|
8 |
SCIACOVELLI A, VECCHI A, DING Y. Liquid air energy storage (LAES) with packed bed cold thermal storage-From component to system level performance through dynamic modelling[J]. Applied Energy, 2017, 190: 84-98.
|
9 |
刘佳, 夏红德, 陈海生, 等. 新型液化空气储能技术及其在风电领域的应用[J]. 工程热物理学报, 2010, 31(12): 1993-1996.
|
|
LIU J, XIA H D, CHEN H S, et al. A novel energy storage technology based on liquid air and its application in wind power[J]. Journal of Engineering Thermophysics, 2010, 31(12): 1993-1996.
|
10 |
天工. 《中国天然气发展报告(2021)》发布[J]. 天然气工业, 2021, 41(8): 68.
|
|
TIAN G. China natural gas development report (2021) [J]. Natural Gas Industry, 2021, 41(8): 68.
|
11 |
LEE I, PARK J, MOON I. Key issues and challenges on the liquefied natural gas value chain: A review from the process systems engineering point of view[J]. Industrial & Engineering Chemistry Research, 2018, 57(17): 5805-5818.
|
12 |
DUTTA A, KARIMI I A, FAROOQ S. Economic feasibility of power generation by recovering cold energy during LNG (liquefied natural gas) regasification[J]. ACS Sustainable Chemistry & Engineering, 2018, 6(8): 10687-10695.
|
13 |
CHOI I H, LEE S, SEO Y, et al. Analysis and optimization of cascade rankine cycle for liquefied natural gas cold energy recovery[J]. Energy, 2013, 61: 179-195.
|
14 |
FERREIRA P A, CATARINO I, VAZ D. Thermodynamic analysis for working fluids comparison in rankine-type cycles exploiting the cryogenic exergy in liquefied natural gas (LNG) regasification[J]. Applied Thermal Engineering, 2017, 121: 887-896.
|
15 |
GÓMEZ M R, GARCIA R F, GÓMEZ J R, et al. Thermodynamic analysis of a brayton cycle and rankine cycle arranged in series exploiting the cold exergy of LNG (liquefied natural gas)[J]. Energy, 2014, 66: 927-937.
|
16 |
TAFONE A, BORRI E, COMODI G, et al. Liquid air energy storage performance enhancement by means of organic rankine cycle and absorption chiller[J]. Applied Energy, 2018, 228: 1810-1821.
|
17 |
QI M, PARK J, KIM J, et al. Advanced integration of LNG regasification power plant with liquid air energy storage: Enhancements in flexibility, safety, and power generation[J]. Applied Energy, 2020, 269: doi: 10.1016/j.apenergy.2020.115049.
|
18 |
AMEEL B, T'JOEN C, DE KERPEL K, et al. Thermodynamic analysis of energy storage with a liquid air rankine cycle[J]. Applied Thermal Engineering, 2013, 52(1): 130-140.
|
19 |
何子睿, 齐伟, 宋锦涛, 等. 耦合液化天然气的液化空气储能系统热力学分析[J]. 储能科学与技术, 2021, 10(5): 1589-1596.
|
|
HE Z R, QI W, SONG J T, et al. The thermodynamic analysis of a liquefied air energy storage system coupled with liquefied natural gas[J]. Energy Storage Science and Technology, 2021, 10(5): 1589-1596.
|
20 |
ZHANG T, CHEN L J, ZHANG X L, et al. Thermodynamic analysis of a novel hybrid liquid air energy storage system based on the utilization of LNG cold energy[J]. Energy, 2018, 155: 641-650.
|
21 |
SHE X H, ZHANG T T, CONG L, et al. Flexible integration of liquid air energy storage with liquefied natural gas regasification for power generation enhancement[J]. Applied Energy, 2019, 251: doi:10.1016/j.apenergy.2019.113355.
|
22 |
PARK J, YOU F Q, CHO H, et al. Novel massive thermal energy storage system for liquefied natural gas cold energy recovery[J]. Energy, 2020, 195: doi:10.1016/j.energy.2020.117022.
|
23 |
PARK J, LEE I, MOON I. A novel design of liquefied natural gas (LNG) regasification power plant integrated with cryogenic energy storage system[J]. Industrial & Engineering Chemistry Research, 2017, 56(5): 1288-1296.
|
24 |
HUR J, PARK J, LANDON R S, et al. Optimization of a reactive distillation process for the synthesis of dialkyl carbonate considering side reactions[J]. Industrial & Engineering Chemistry Research, 2019, 58(38): 17898-17905.
|
25 |
赖建波, 郭保玲, 陈照烽, 等. LNG冷能用于发电、冷库及数据中心联合技术[J]. 煤气与热力, 2020, 40(8): 8-12, 44.
|
|
LAI J B, GUO B L, CHEN Z F, et al. Combined technology of LNG cold energy used in power generation, cold storage and data center[J]. Gas & Heat, 2020, 40(8): 8-12, 44.
|