1 |
CHEN Z, SUN M M, SHU X, et al. Online state of health estimation for lithium-ion batteries based on support vector machine[J]. Applied Sciences, 2018, 8(6): 925.
|
2 |
SHU X, LI G, SHEN J W, et al. An adaptive fusion estimation algorithm for state of charge of lithium-ion batteries considering wide operating temperature and degradation[J]. Journal of Power Sources, 2020, 462: doi: 10.1016/j.jpowsour.2020.228132.
|
3 |
HU X S, LI S E, YANG Y Lapproach. Advanced machine learning approach for lithium-ion battery state estimation in electric vehicles[J]. IEEE Transactions on Transportation Electrification, 2016, 2(2): 140-149 .
|
4 |
马彦,陈阳,张帆,等. 基于扩展H∞粒子滤波算法的动力电池寿命预测方法[J]. 机械工程学报, 2019, 55(20): 36-43.
|
|
MA Y, CHEN Y, ZHANG F, et al. Remaining useful life prediction of power battery based on extend H∞ particle filter algorithm[J]. Journal of Mechanical Engineering, 2019, 55(20): 36-43.
|
5 |
HU X S, YUAN H, ZOU C F, et al. Co-estimation of state of charge and state of health for lithium-ion batteries based on fractional-order calculus[J]. IEEE Transactions on Vehicular Technology, 2018, 67(11): 10319-10329.
|
6 |
SAHA B, GOEBEL K, POLL S, et al. Prognostics methods for battery health monitoring using a Bayesian framework[J]. IEEE Transactions on Instrumentation and Measurement, 2009, 58(2): 291-296.
|
7 |
韦海燕, 安晶晶, 陈静, 等. 基于改进粒子滤波算法实现锂离子电池RUL预测[J]. 汽车工程, 2019, 41(12): 1377-1383.
|
|
WEI H Y, AN J J, CHEN J, et al. RUL prediction of lithium-ion battery based on improved particle filtering algorithm[J]. Automotive Engineering, 2019, 41(12): 1377-1383.
|
8 |
郑涛, 张里, 侯杨成, 等. 基于自适应CKF的老化锂电池SOC估计[J]. 储能科学与技术, 2020, 9(4): 1193-1199.
|
|
ZHENG T, ZHANG L, HOU Y C, et al. SOC estimation of aging lithium battery based on adaptive CKF[J]. Energy Storage Science and Technology, 2020, 9(4): 1193-1199.
|
9 |
NG S S Y, XING Y J, TSUI K L. A naive Bayes model for robust remaining useful life prediction of lithium-ion battery[J]. Applied Energy, 2014, 118: 114-123.
|
10 |
ZHANG Y Z, XIONG R, HE H W, et al. Lithium-ion battery remaining useful life prediction with box-cox transformation and Monte Carlo simulation[J]. IEEE Transactions on Industrial Electronics, 2019, 66(2): 1585-1597.
|
11 |
DAI H D, ZHAO G C, LIN M Q, et al. A novel estimation method for the state of health of lithium-ion battery using prior knowledge-based neural network and Markov chain[J]. IEEE Transactions on Industrial Electronics, 2019, 66(10): 7706-7716.
|
12 |
DENG Y W, YING H J, ER J Q, et al. Feature parameter extraction and intelligent estimation of the state-of-health of lithium-ion batteries[J]. Energy, 2019, 176: 91-102.
|
13 |
韩云飞, 谢佳, 蔡涛, 等. 结合高斯过程回归与特征选择的锂离子电池容量估计方法[J]. 储能科学与技术, 2021, 10(4): 1432-1438.
|
|
HAN Y F, XIE J, CAI T, et al. Capacity estimation of lithium-ion batteries based on Gaussian process regression and feature selection[J]. Energy Storage Science and Technology, 2021, 10(4): 1432-1438.
|
14 |
张新锋, 姚蒙蒙, 王钟毅, 等. 基于ACO-BP神经网络的锂离子电池容量衰退预测[J]. 储能科学与技术, 2020, 9(1): 138-144.
|
|
ZHANG X F, YAO M M, WANG Z Y, et al. Lithium-ion battery capacity decline prediction based on ant colony optimization BP neural network algorithm[J]. Energy Storage Science and Technology, 2020, 9(1): 138-144.
|
|
张新锋, 姚蒙蒙, 王钟毅, 等. 基于ACO-BP神经网络的锂离子电池容量衰退预测[J]. 储能科学与技术, 2020(1): 173-179.
|
|
ZHANG X F, YAO M M, WANG Z Y, et al. Lithium-ion battery capacity decline prediction based on ant colony optimization BP neural network algorithm[J]. Energy Storage Science and Technology, 2020(1): 173-179.
|
15 |
GUO P Y, CHENG Z, YANG L. A data-driven remaining capacity estimation approach for lithium-ion batteries based on charging health feature extraction[J]. Journal of Power Sources, 2019, 412: 442-450.
|
16 |
ZHOU D, YIN H T, XIE W, et al. Research on online capacity estimation of power battery based on EKF-GPR model[J]. Journal of Chemistry, 2019: doi:10.1155/2019/5327319.
|
17 |
LI X Y, WANG Z P, YAN J Y. Prognostic health condition for lithium battery using the partial incremental capacity and Gaussian process regression[J]. Journal of Power Sources, 2019, 421: 56-67.
|
18 |
LI X Y, ZHANG L, WANG Z P, et al. Remaining useful life prediction for lithium-ion batteries based on a hybrid model combining the long short-term memory and Elman neural networks[J]. Journal of Energy Storage, 2019, 21: 510-518.
|
19 |
SEVERSON K A, ATTIA P M, JIN N, et al. Data-driven prediction of battery cycle life before capacity degradation[J]. Nature Energy, 2019, 4(5): 383-391.
|
20 |
LI Y, ABDEL-MONEM M, GOPALAKRISHNAN R, et al. A quick on-line state of health estimation method for Li-ion battery with incremental capacity curves processed by Gaussian filter[J]. Journal of Power Sources, 2018, 373: 40-53.
|
21 |
LI X Y, WANG Z P, ZHANG L, et al. State-of-health estimation for Li-ion batteries by combing the incremental capacity analysis method with grey relational analysis[J]. Journal of Power Sources, 2019, 410/411: 106-114.
|
22 |
WANG P, MENG P, SONG B W. Response surface method using grey relational analysis for decision making in weapon system selection[J]. Journal of Systems Engineering and Electronics, 2014, 25(2): 265-272.
|
23 |
LU C, TAO L F, FAN H Z. Li-ion battery capacity estimation: A geometrical approach[J]. Journal of Power Sources, 2014, 261: 141-147.
|
24 |
SUN W Z, WANG J S. Elman neural network soft-sensor model of conversion velocity in polymerization process optimized by chaos whale optimization algorithm[J]. IEEE Access, 2017, 5: 13062-13076.
|
25 |
LIU H, TIAN H Q, LIANG X F, et al. Wind speed forecasting approach using secondary decomposition algorithm and Elman neural networks[J]. Applied Energy, 2015, 157: 183-194.
|
26 |
HE W, WILLIARD N, OSTERMAN M, et al. Prognostics of lithium-ion batteries based on dempster-shafer theory and the bayesian monte carlo method[J]. Journal of Power Sources, 2011, 196(23): 10314-10321.
|