储能科学与技术 ›› 2023, Vol. 12 ›› Issue (1): 180-197.doi: 10.19799/j.cnki.2095-4239.2022.0498
收稿日期:
2022-09-02
修回日期:
2022-09-16
出版日期:
2023-01-05
发布日期:
2023-02-08
通讯作者:
李传常
E-mail:csustlimu@126.com;chuanchangli@126.com
作者简介:
李沐(1999—),男,硕士研究生,研究方向为相变储冷技术及其应用,E-mail:csustlimu@126.com;
基金资助:
Mu LI(), Yaxi LI, Chuanchang LI()
Received:
2022-09-02
Revised:
2022-09-16
Online:
2023-01-05
Published:
2023-02-08
Contact:
Chuanchang LI
E-mail:csustlimu@126.com;chuanchangli@126.com
摘要:
储能是实现“双碳”目标的关键支撑技术之一。相变储能因能实现能量的存储及释放、有效提高能源利用效率,是目前解决能源供需不平衡问题的重要途径。随着人们对冷能需求的增长,相变储冷技术受到了研究者的广泛关注,但与传统相变储热技术相比,相变储冷技术这一领域的综述文章还较少。本文梳理了相变储冷技术的基本工作原理和特点,介绍了应用于储冷空调系统相变材料的不同种类、性质及其优缺点,阐述了相变储冷关键技术,包括物性提升关键技术、传热强化关键技术、封装定型关键技术,分析了储冷空调中的不同储冷器件结构(板式、球式、螺旋管式、壳管式)和应用技术。进而总结了相变储冷技术在常规储冷空调系统及冷链运输储冷空调系统中的应用。本文对储冷技术目前的发展现状及前景分别做出了较全面的总结和分析,指出了相变材料性能的改善、储冷器件的传热强化、空调系统的COP和节能率的提升、保持系统的长期稳定运行是今后对储冷空调系统的研究重点。
中图分类号:
李沐, 李亚溪, 李传常. 相变储冷技术及其在空调系统中的应用[J]. 储能科学与技术, 2023, 12(1): 180-197.
Mu LI, Yaxi LI, Chuanchang LI. Phase-change cold storage technology and its application in air conditioning systems[J]. Energy Storage Science and Technology, 2023, 12(1): 180-197.
1 | 刘志成, 彭道刚, 赵慧荣, 等. 双碳目标下储能参与电力系统辅助服务发展前景[J]. 储能科学与技术, 2022, 11(2): 704-716. |
LIU Z C, PENG D G, ZHAO H R, et al. Development prospects of energy storage participating in auxiliary services of power systems under the targets of the dual-carbon goal[J]. Energy Storage Science and Technology, 2022, 11(2): 704-716. | |
2 | 邱萍. 建筑部门温室气体减排中的行为引导措施研究——以北京市为例[D]. 北京: 北京建筑大学, 2021. |
QIU P. Behavioral guidance measures for greenhouse gas emission reduction in the building sector—A case study on Beijing[D]. Beijing: Beijing University of Civil Engineering and Architecture, 2021. | |
3 | ZEINELABDEIN R, OMER S, GAN G H. Experimental performance of latent thermal energy storage for sustainable cooling of buildings in hot-arid regions[J]. Energy and Buildings, 2019, 186: 169-185. |
4 | OMARA A A M, ABUELNOUR A A A. Improving the performance of air conditioning systems by using phase change materials: A review[J]. International Journal of Energy Research, 2019, 43(10): 5175-5198. |
5 | VAKILOROAYA V, SAMALI B, FAKHAR A, et al. A review of different strategies for HVAC energy saving[J]. Energy Conversion and Management, 2014, 77: 738-754. |
6 | 王俊, 曹建军, 张利勇, 等. 基于分布式能源系统的蓄冷蓄热技术应用现状[J]. 储能科学与技术, 2020, 9(6): 1847-1857. |
WANG J, CAO J J, ZHANG L Y, et al. Review on application of cold storage and heat storage technology based on distributed energy system[J]. Energy Storage Science and Technology, 2020, 9(6): 1847-1857. | |
7 | 林酿志, 李传常. 相变储能材料及其冷链运输应用[J]. 储能科学与技术, 2021, 10(3): 1040-1050. |
LIN N Z, LI C C. Phase change materials for energy storage in cold-chain transportation[J]. Energy Storage Science and Technology, 2021, 10(3): 1040-1050. | |
8 | 喻彩梅, 章学来, 华维三. 十水硫酸钠相变储能材料研究进展[J]. 储能科学与技术, 2021, 10(3): 1016-1024. |
YU C M, ZHANG X L, HUA W S. Research progress of sodium sulfate decahydrate phase changematerial[J]. Energy Storage Science and Technology, 2021, 10(3): 1016-1024. | |
9 | ZHAI X Q, WANG X L, WANG T, et al. A review on phase change cold storage in air-conditioning system: Materials and applications[J]. Renewable and Sustainable Energy Reviews, 2013, 22: 108-120. |
10 | ZHAO Y, ZHANG X L, XU X F, et al. Research progress of phase change cold storage materials used in cold chain transportation and their different cold storage packaging structures[J]. Journal of Molecular Liquids, 2020, 319: doi: 10.1016/j.mdliq.2020.114360. |
11 | ALLOUCHE Y, VARGA S, BOUDEN C, et al. Dynamic simulation of an integrated solar-driven ejector based air conditioning system with PCM cold storage[J]. Applied Energy, 2017, 190: 600-611. |
12 | COMODI G, CARDUCCI F, NAGARAJAN B, et al. Application of cold thermal energy storage (CTES) for building demand management in hot climates[J]. Applied Thermal Engineering, 2016, 103: 1186-1195. |
13 | HUSSAIN A, TSO C Y, CHAO C Y H. Experimental investigation of a passive thermal management system for high-powered lithium ion batteries using nickel foam-paraffin composite[J]. Energy, 2016, 115: 209-218. |
14 | 江燕涛. 动态冰浆蓄冷湿冷技术在果蔬冷藏中的应用前景分析[J]. 制冷与空调, 2015, 15(10): 5-9, 36. |
JIANG Y T. Analysis on application prospect of dynamic ice slurry storage humid cool refrigeration technology in fruit and vegetable storage[J]. Refrigeration and Air-Conditioning, 2015, 15(10): 5-9, 36. | |
15 | ELIAS C N, STATHOPOULOS V N. A comprehensive review of recent advances in materials aspects of phase change materials in thermal energy storage[J]. Energy Procedia, 2019, 161: 385-394. |
16 | 刘丽辉, 莫雅菁, 孙小琴, 等. 纳米增强型复合相变材料的传热特性[J]. 储能科学与技术, 2020, 9(4): 1105-1112. |
LIU L H, MO Y J, SUN X Q, et al. Thermal behavior of the nanoenhanced phase change materials[J]. Energy Storage Science and Technology, 2020, 9(4): 1105-1112. | |
17 | 吴丽梅, 刘庆欣, 王晓龙, 等. 相变储能材料研究进展[J]. 材料导报, 2021, 35(S1): 501-506. |
WU L M, LIU Q X, WANG X L, et al. Review on phase change energy storage materials[J]. Materials Reports, 2021, 35(S1): 501-506. | |
18 | 孟令然, 郭立江, 李晓禹, 等. 水合盐相变储能材料的研究进展[J]. 储能科学与技术, 2017, 6(4): 623-632. |
MENG L R, GUO L J, LI X Y, et al. Salt hydrate based phase change materials for thermal energy storage—A review[J]. Energy Storage Science and Technology, 2017, 6(4): 623-632. | |
19 | 张新星, 周园, 李翔, 等. 六水氯化钙基无机水合盐相变储能材料的研究进展[J]. 储能科学与技术, 2018, 7(1): 40-47. |
ZHANG X X, ZHOU Y, LI X, et al. Research progress of calcium chloride hexahydrate phase change material[J]. Energy Storage Science and Technology, 2018, 7(1): 40-47. | |
20 | 李亚溪, 林酿志, 李传常. 高吸水性树脂基相变储冷材料及其在冷链运输中的应用[J]. 东北电力大学学报, 2021, 41(2): 55-64. |
LI Y X, LIN N Z, LI C C. Superabsorbent polymer-based phasechange cold storage materials and their application in cold chain transportation[J]. Journal of Northeast Electric Power University, 2021, 41(2): 55-64. | |
21 | 杨天润, 孙锲, RONALD W, 等. 相变蓄冷材料的研究进展[J]. 工程热物理学报, 2018, 39(3): 567-573. |
YANG T R, SUN Q, RONALD W, et al. Review of phase change materials for cold thermal energy storage[J]. Journal of Engineering Thermophysics, 2018, 39(3): 567-573. | |
22 | VEERAKUMAR C, SREEKUMAR A. Phase change material based cold thermal energy storage: Materials, techniques and applications—A review[J]. International Journal of Refrigeration, 2016, 67: 271-289. |
23 | ZHAO Y, ZHANG X L, XU X F, et al. Development of composite phase change cold storage material and its application in vaccine cold storage equipment[J]. Journal of Energy Storage, 2020, 30: doi: 10.1016/j.est.2020.101455. |
24 | 徐笑锋, 章学来, 周孙希, 等. 蓄冷式多温区保温箱系统设计与实验研究[J]. 制冷学报, 2019, 40(3): 92-98. |
XU X F, ZHANG X L, ZHOU S X, et al. Design and experimental study on the storage type insulation box with multi-temperature[J]. Journal of Refrigeration, 2019, 40(3): 92-98. | |
25 | 李梦欣, 陈鹏, 吕钟灵, 等. 复合无机盐相变蓄冷材料的制备与改性研究[J]. 制冷学报, 2021, 42(4): 106-115. |
LI M X, CHEN P, LÜ Z L, et al. Preparation and modification of composite inorganic salt phase change materials for cold storage[J]. Journal of Refrigeration, 2021, 42(4): 106-115. | |
26 | ZOU T, FU W W, LIANG X H, et al. Preparation and performance of modified calcium chloride hexahydrate composite phase change material for air-conditioning cold storage[J]. International Journal of Refrigeration, 2018, 95: 175-181. |
27 | LI Y X, LI C C, LIN N Z, et al. Review on tailored phase change behavior of hydrated salt as phase change materials for energy storage[J]. Materials Today Energy, 2021, 22: doi: 10.1016/j.mtener.2021.100866. |
28 | FANG Y T, SU J M, FU W W, et al. Preparation and thermal properties of NaOAc·3H2O-CO(NH2)2 non-eutectic binary mixture PCM for radiant floor heating system[J]. Applied Thermal Engineering, 2020, 167: doi: 10.1016/j.applthermaleng.2019.114820. |
29 | FANG Y T, SU J M, TANG Y F, et al. Form-stable Na2SO4 ·10H2O-Na2HPO4 ·12H2O eutectic/hydrophilic fumed silica composite phase change material with low supercooling and low thermal conductivity for indoor thermal comfort improvement[J]. International Journal of Energy Research, 2020, 44(4): 3171-3182. |
30 | LIN N Z, LI C C, ZHANG D Y, et al. Emerging phase change cold storage materials derived from sodium sulfate decahydrate[J]. Energy, 2022, 245: doi: 10.1016/j.energy.2022.123294. |
31 | LIU Y S, YANG Y Z. Investigation of specific heat and latent heat enhancement in hydrate salt based TiO2 nanofluid phase change material[J]. Applied Thermal Engineering, 2017, 124: 533-538. |
32 | HUANG K Y, LI J H, LUAN X Z, et al. Effect of graphene oxide on phase change materials based on disodium hydrogen phosphate dodecahydrate for thermal storage[J]. ACS Omega, 2020, 5(25): 15210-15217. |
33 | XU X F, ZHANG X L, ZHOU S X, et al. Experimental and application study of Na2SO4 ·10H2O with additives for cold storage[J]. Journal of Thermal Analysis and Calorimetry, 2019, 136(2): 505-512. |
34 | XIE N, LUO J M, LI Z P, et al. Salt hydrate/expanded vermiculite composite as a form-stable phase change material for building energy storage[J]. Solar Energy Materials and Solar Cells, 2019, 189: 33-42. |
35 | LIU Y S, YU K Y, GAO X J, et al. Enhanced thermal properties of hydrate salt/poly (acrylate sodium) copolymer hydrogel as form-stable phase change material via incorporation of hydroxyl carbon nanotubes[J]. Solar Energy Materials and Solar Cells, 2020, 208: doi: 10.1016/j.solmat.2019.110387. |
36 | BRUNO F, BELUSKO M, LIU M, et al. Using solid-liquid phase change materials (PCMs) in thermal energy storage systems[M]//Advances in Thermal Energy Storage Systems. Amsterdam: Elsevier, 2015: 201-246. |
37 | LIAN Q S, LI K, SAYYED A A S, et al. Study on a reliable epoxy-based phase change material: Facile preparation, tunable properties, and phase/microphase separation behavior[J]. Journal of Materials Chemistry A, 2017, 5(28): 14562-14574. |
38 | 金光, 肖安汝, 刘梦云. 相变储能强化传热技术的研究进展[J]. 储能科学与技术, 2019, 8(6): 1107-1115. |
JIN G, XIAO A R, LIU M Y. Research progress on heat transfer enhancement technology of phase change energy storage[J]. Energy Storage Science and Technology, 2019, 8(6): 1107-1115. | |
39 | SELVNES H, ALLOUCHE Y, MANESCU R I, et al. Review on cold thermal energy storage applied to refrigeration systems using phase change materials[J]. Thermal Science and Engineering Progress, 2021, 22: doi: 10.1016/j.tsep.2020.100807. |
40 | LIN N Z, LI C C, ZHANG D Y, et al. Enhanced cold storage performance of Na2SO4 ·10H2O/expanded graphite composite phase change materials[J]. Sustainable Energy Technologies and Assessments, 2021, 48: doi: 10.1016/j.seta.2021.101596. |
41 | HONCOVÁ P, SÁDOVSKÁ G, PASTVOVÁ J, et al. Improvement of thermal energy accumulation by incorporation of carbon nanomaterial into magnesium chloride hexahydrate and magnesium nitrate hexahydrate[J]. Renewable Energy, 2021, 168: 1015-1026. |
42 | 闫晓鑫, 冯妍卉, 邱琳, 等. 赤藓糖醇/碳纳米管复合相变材料热特性模拟研究[J]. 工程科学学报, 2022, 44(4): 722-729. |
YAN X X, FENG Y H, QIU L, et al. Simulation of thermal properties of erythritol/carbon nanotube composite phase change materials[J]. Chinese Journal of Engineering, 2022, 44(4): 722-729. | |
43 | PANDYA M, KUMAR ANSU A, KUMAR SHARMA R. Copper based nano Materials-Enhanced phase change materials with great potential for improved thermal energy storage properties[J]. Materials Today: Proceedings, 2022, 63: 786-789. |
44 | WU S F, YAN T, KUAI Z H, et al. Thermal conductivity enhancement on phase change materials for thermal energy storage: A review[J]. Energy Storage Materials, 2020, 25: 251-295. |
45 | LI B X, LIU T X, HU L Y, et al. Facile preparation and adjustable thermal property of stearic acid-graphene oxide composite as shape-stabilized phase change material[J]. Chemical Engineering Journal, 2013, 215/216: 819-826. |
46 | LIU Z P, YANG R. Synergistically-enhanced thermal conductivity of shape-stabilized phase change materials by expanded graphite and carbon nanotube[J]. Applied Sciences, 2017, 7(6): 574. |
47 | CHENG P, CHEN X, GAO H Y, et al. Different dimensional nanoadditives for thermal conductivity enhancement of phase change materials: Fundamentals and applications[J]. Nano Energy, 2021, 85: doi: 10.1016/j.nanoen.2021.105948. |
48 | RATHOD M K, BANERJEE J. Thermal performance enhancement of shell and tube latent heat storage unit using longitudinal fins[J]. Applied Thermal Engineering, 2015, 75: 1084-1092. |
49 | MOSAFFA A H, TALATI F, TABRIZI H B, et al. Analytical modeling of PCM solidification in a shell and tube finned thermal storage for air conditioning systems[J]. Energy and Buildings, 2012, 49: 356-361. |
50 | ZHAO J J, LONG J L, DU Y Q, et al. Recyclable low-temperature phase change microcapsules for cold storage[J]. Journal of Colloid and Interface Science, 2020, 564: 286-295. |
51 | FU W W, ZOU T, LIANG X H, et al. Preparation and properties of phase change temperature-tuned composite phase change material based on sodium acetate trihydrate-urea/fumed silica for radiant floor heating system[J]. Applied Thermal Engineering, 2019, 162: doi: 10.1016/j.applthermaleng.2019.114253. |
52 | WEI P, CHEN W W, SONG Q H, et al. Superabsorbent hydrogels enhanced by quaternized tunicate cellulose nanocrystals with adjustable strength and swelling ratio[J]. Cellulose, 2021, 28(6): 3723-3732. |
53 | 龙金领. 正十三烷/聚苯乙烯微胶囊相变材料的制备与表征[D]. 郑州: 郑州大学, 2017. |
LONG J L. Preparation and characterization of n-tridecane/polystyrene microcapsule phase change materials[D]. Zhengzhou: Zhengzhou University, 2017. | |
54 | 常洋珲, 孙志高. 十四烷微胶囊的制备及性能研究[J]. 功能材料, 2022, 53(7): 7196-7202. |
CHANG Y H, SUN Z G. Synthesis and thermal properties of tetradecane phase change microcapsules[J]. Journal of Functional Materials, 2022, 53(7): 7196-7202. | |
55 | XIE N, LI Z P, GAO X N, et al. Preparation and performance of modified expanded graphite/eutectic salt composite phase change cold storage material[J]. International Journal of Refrigeration, 2020, 110: 178-186. |
56 | 孔琪. 可降解相变蓄冷材料制备及在香菇贮藏中的应用[D]. 杨凌: 西北农林科技大学, 2021. |
KONG Q. Degradable phase change cold storage material: Preparation and application in lentinus edodes storage[D]. Yangling: Northwest A & F University, 2021. | |
57 | 杨晋, 殷勇高, 陈万河, 等. 硫酸钠水合盐相变蓄冷材料的制备及性能优化[J]. 化工进展, 2022, 41(11): 5977-5985. |
Yang J, Yin Y G, Chen W H, et al. Preparation and performance optimization of phase change cold storage materials with sodium sulfate hydrate salt[J]. Chemical Industry and Engineering Progress, 2022, 41(11): 5977-5985. | |
58 | LIU M, BRUNO F, SAMAN W. Thermal performance analysis of a flat slab phase change thermal storage unit with liquid-based heat transfer fluid for cooling applications[J]. Solar Energy, 2011, 85(11): 3017-3027. |
59 | MORENO P, CASTELL A, SOLÉ C, et al. PCM thermal energy storage tanks in heat pump system for space cooling[J]. Energy and Buildings, 2014, 82: 399-405. |
60 | WANG X L, ZHAI X Q, WANG T, et al. Performance of the capric and lauric acid mixture with additives as cold storage materials for high temperature cooling application[J]. Applied Thermal Engineering, 2013, 58(1/2): 252-260. |
61 | WU J, GAGNIÈRE E, JAY F, et al. Population balance modeling for the charging process of a PCM cold energy storage tank[J]. International Journal of Heat and Mass Transfer, 2015, 85: 647-655. |
62 | 李晓燕, 高霞, 张广宇, 等. 空调用蓄冷器蓄冷过程的动态特性研究[J]. 建筑热能通风空调, 2010, 29(6): 40-43. |
LI X Y, GAO X, ZHANG G Y, et al. Dynamic character study on storage process of storage tank for air-conditioning system[J]. Building Energy & Environment, 2010, 29(6): 40-43. | |
63 | 李晓燕, 毕玉. PCM蓄冷球蓄冷过程的动态研究[J]. 节能技术, 2016, 34(5): 418-422. |
LI X Y, BI Y. Investigation on the dynamic characteristics of PCM cold storage sphere for charging process[J]. Energy Conservation Technology, 2016, 34(5): 418-422. | |
64 | LÓPEZ-NAVARRO A, BIOSCA-TARONGER J, CORBERÁN J M, et al. Performance characterization of a PCM storage tank[J]. Applied Energy, 2014, 119: 151-162. |
65 | TORREGROSA-JAIME B, LÓPEZ-NAVARRO A, CORBERÁN J M, et al. Experimental analysis of a paraffin-based cold storage tank[J]. International Journal of Refrigeration, 2013, 36(6): 1632-1640. |
66 | TAY N H S, BRUNO F, BELUSKO M. Experimental validation of a CFD and an ε-NTU model for a large tube-in-tank PCM system[J]. International Journal of Heat and Mass Transfer, 2012, 55(21/22): 5931-5940. |
67 | DE FALCO M, CAPOCELLI M, GIANNATTASIO A. Performance analysis of an innovative PCM-based device for cold storage in the civil air conditioning[J]. Energy and Buildings, 2016, 122: 1-10. |
68 | ISMAIL K A R, LINO F A M, DA SILVA R C R, et al. Experimentally validated two dimensional numerical model for the solidification of PCM along a horizontal long tube[J]. International Journal of Thermal Sciences, 2014, 75: 184-193. |
69 | BIANCO N, FRAGNITO A, IASIELLO M, et al. Multi-objective optimization of a phase change material-based shell-and-tube heat exchanger for cold thermal energy storage: Experiments and numerical modeling[J]. Applied Thermal Engineering, 2022, 215: doi: 10.1016/j.applthermaleng.2022.119047. |
70 | HUANG Y P, SUN Q, YAO F, et al. Performance optimization of a finned shell-and-tube ice storage unit[J]. Applied Thermal Engineering, 2020, 167: doi: 10.1016/j.applthermaleng.2019.114788. |
71 | LI S F, LIU Z H, WANG X J. A comprehensive review on positive cold energy storage technologies and applications in air conditioning with phase change materials[J]. Applied Energy, 2019, 255: doi: 10.1016/j.apenergy.2019.113667. |
72 | ZHANG J W, LI Z X, TONG S H. System performance and economic analysis of a phase change material based cold energy storage container for cold chain transportation[J]. International Journal of Photoenergy, 2022, doi: 10.1155/2022/6836686. |
73 | HOSEINI RAHDAR M, EMAMZADEH A, ATAEI A. A comparative study on PCM and ice thermal energy storage tank for air-conditioning systems in office buildings[J]. Applied Thermal Engineering, 2016, 96: 391-399. |
74 | 冯晓平. 相变蓄冷空调系统运行策略及应用分析[D]. 北京: 北京建筑大学, 2020. |
FENG X P. Research on operation strategy and application of phase change cool storage air conditioning system[D]. Beijing: Beijing University of Civil Engineering and Architecture, 2020. | |
75 | ZHAI X Q, WANG X L, WANG C, et al. Experimental investigation of a novel phase change cold storage used for a solar air-conditioning system[J]. HVAC&R Research, 2014, 20(3): 302-310. |
76 | 孙峙峰, 赵耀华, 徐伟, 等. 相变蓄冷技术在公共建筑太阳能空调系统中的应用研究[J]. 太阳能学报, 2019, 40(11): 3148-3155. |
SUN Z F, ZHAO Y H, XU W, et al. Application study on phase-change storage of solar air conditioning system in public buildings[J]. Acta Energiae Solaris Sinica, 2019, 40(11): 3148-3155. | |
77 | CHEN X J, WORALL M, OMER S, et al. Experimental investigation on PCM cold storage integrated with ejector cooling system[J]. Applied Thermal Engineering, 2014, 63(1): 419-427. |
78 | ZHENG L, ZHANG W, XIE L Z, et al. Experimental study on the thermal performance of solar air conditioning system with MEPCM cooling storage[J]. International Journal of Low-Carbon Technologies, 2019, 14(1): 83-88. |
79 | TONG S H, NIE B J, LI Z X, et al. A phase change material (PCM) based passively cooled container for integrated road-rail cold chain transportation-An experimental study[J]. Applied Thermal Engineering, 2021, 195: doi: 10.1016/j.applthermaleng.2021.117204. |
80 | LIU M, SAMAN W, BRUNO F. Development of a novel refrigeration system for refrigerated trucks incorporating phase change material[J]. Applied Energy, 2012, 92: 336-342. |
[1] | 毛前军, 朱元媛. 新型分叉翅片强化管壳式储能罐储热性能[J]. 储能科学与技术, 2023, 12(1): 69-78. |
[2] | 毛发, 章学来, 华维三. 十二水硫酸铝钾相变蓄热材料研究进展[J]. 储能科学与技术, 2023, 12(1): 120-130. |
[3] | 王君雷, 张第玲, 王昆, 许东东, 徐祥贵, 姚华, 刘文巍, 黄云. 碳酸盐/高炉矿渣定型复合相变储热材料的制备与性能[J]. 储能科学与技术, 2022, 11(9): 3028-3034. |
[4] | 蒋铖一, 钟尊睿, 吴自德, 彭浩. C8H18~C11H24 混合烷烃体系相变材料的热力学性能[J]. 储能科学与技术, 2022, 11(6): 1957-1967. |
[5] | 周新宇, 栾道成, 胡志华, 凌俊华, 文科林, 刘浪, 阴志铭, 米书恒, 王正云. 含碳二元系相变储热材料储热性能分析选择[J]. 储能科学与技术, 2022, 11(4): 1175-1183. |
[6] | 李钰颖, 魏雯珍, 李琦, 吴玉庭. 可用于低中温热能储存的四元硝酸盐/埃洛石/石墨定型复合材料的制备与研究[J]. 储能科学与技术, 2022, 11(3): 1044-1051. |
[7] | 张永学, 王梓熙, 鲁博辉, 杨胜旗, 赵泓宇. 雪花型翅片提高相变储热单元储/放热性能[J]. 储能科学与技术, 2022, 11(2): 521-530. |
[8] | 郭云琪, 盛楠, 朱春宇, 饶中浩. 基于模板法制备氧化铝纤维及其石蜡复合相变材料热性能[J]. 储能科学与技术, 2022, 11(2): 511-520. |
[9] | 薛洁, 张军, 杜昭, 胡汝坤, 杨肖虎. 新型平底型相变蓄热器蓄热性能的数值模拟[J]. 储能科学与技术, 2022, 11(12): 3855-3861. |
[10] | 毛前军, 陈凯莉. 楔形管壳式蓄热罐的传热性能[J]. 储能科学与技术, 2022, 11(11): 3658-3666. |
[11] | 张琦, 王玉静, 李银雷, 刘重阳. 一种新型蓄冷储热复合相变材料及其应用[J]. 储能科学与技术, 2022, 11(10): 3133-3141. |
[12] | 柴进, 王军, 倪奇强. 纳米颗粒协同肋片强化相变材料传热性能试验[J]. 储能科学与技术, 2022, 11(10): 3161-3170. |
[13] | 常洋珲, 孙志高. 十五烷微胶囊潜热型功能流体的制备及其性能[J]. 储能科学与技术, 2022, 11(10): 3123-3132. |
[14] | 安治国, 张显, 祝惠, 张春杰. 蜂窝状CPCM/水冷复合式圆柱型锂电池散热性能[J]. 储能科学与技术, 2022, 11(1): 211-220. |
[15] | 次恩达, 王会, 李晓卿, 张英, 张振迎, 李建强. 六水硝酸镁-硝酸锂共晶盐/膨胀石墨复合相变材料的制备及性能强化[J]. 储能科学与技术, 2022, 11(1): 30-37. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||