储能科学与技术 ›› 2023, Vol. 12 ›› Issue (10): 3087-3098.doi: 10.19799/j.cnki.2095-4239.2023.0517
收稿日期:
2023-08-01
修回日期:
2023-08-20
出版日期:
2023-10-05
发布日期:
2023-10-09
通讯作者:
隋艳伟
E-mail:zhao_dy@cumt.edu.cn;wyds123456@outlook.com
作者简介:
赵丹阳(1994—),女,博士,讲师,从事电化学储能器件研究,E-mail:zhao_dy@cumt.edu.cn;
基金资助:
Danyang ZHAO(), Xiang ZHANG, Fan XU, Yanwei SUI()
Received:
2023-08-01
Revised:
2023-08-20
Online:
2023-10-05
Published:
2023-10-09
Contact:
Yanwei SUI
E-mail:zhao_dy@cumt.edu.cn;wyds123456@outlook.com
摘要:
废旧三元锂离子电池正极材料中的有价金属组分的有效回收和再利用,可以促进电化学储能和新能源汽车行业的稳定发展,实现能源循环再利用。目前三元锂离子电池正极材料的回收面临缺乏成熟的回收工艺和再利用体系不完善的关键问题。本文通过对近期相关文献的探讨,综述了废旧三元锂离子电池正极材料资源化回收与再利用的研究进展,从资源和环境两个角度论述了废旧三元锂离子电池正极材料回收的必要性。对于退役锂离子电池的预处理方式,着重介绍了放电、拆卸和分离工艺;对所获得的废旧三元正极材料,重点分析了有价金属的火法冶炼和湿法浸出等回收工艺的工作原理、研究现状和优劣势;对于三元正极材料的再生策略,着重阐述了基于浸出液直接再生正极材料的有效方法,并展望未来废旧三元锂离子电池资源化回收工艺可能存在的问题和面临的挑战。综合分析表明,合适的预处理、回收和再生策略,为废旧三元锂离子电池中有价金属的绿色、高效和低成本再利用提供重要的参考价值。
赵丹阳, 张翔, 徐帆, 隋艳伟. 废旧三元锂离子电池正极材料资源化回收研究进展[J]. 储能科学与技术, 2023, 12(10): 3087-3098.
Danyang ZHAO, Xiang ZHANG, Fan XU, Yanwei SUI. Progress of resource recovery of retired ternary lithium-ion battery cathode materials[J]. Energy Storage Science and Technology, 2023, 12(10): 3087-3098.
1 | 陈海生, 李泓, 马文涛, 等. 2021年中国储能技术研究进展[J]. 储能科学与技术, 2022, 11(3): 1052-1076. |
CHEN H S, LI H, MA W T, et al. Research progress of energy storage technology in China in 2021[J]. Energy Storage Science and Technology, 2022, 11(3): 1052-1076. | |
2 | WANG Y Q, AN N, WEN L, et al. Recent progress on the recycling technology of Li-ion batteries[J]. Journal of Energy Chemistry, 2021, 55: 391-419. |
3 | MIAO Y P, LIU L L, ZHANG Y P, et al. An overview of global power lithium-ion batteries and associated critical metal recycling[J]. Journal of Hazardous Materials, 2022, 425: 127900. |
4 | ZHU A H, BIAN X Y, HAN W J, et al. The application of deep eutectic solvents in lithium-ion battery recycling: A comprehensive review[J]. Resources, Conservation and Recycling, 2023, 188: 106690. |
5 | TIAN G D, YUAN G, ALEKSANDROV A, et al. Recycling of spent lithium-ion batteries: A comprehensive review for identification of main challenges and future research trends[J]. Sustainable Energy Technologies and Assessments, 2022, 53: 102447. |
6 | ALI H, KHAN H A, PECHT M. Preprocessing of spent lithium-ion batteries for recycling: Need, methods, and trends[J]. Renewable and Sustainable Energy Reviews, 2022, 168: 112809. |
7 | WU J W, ZHENG M T, LIU T F, et al. Direct recovery: A sustainable recycling technology for spent lithium-ion battery[J]. Energy Storage Materials, 2023, 54: 120-134. |
8 | SCHOFER K, LAUFER F, STADLER J, et al. Machine learning-based lifetime prediction of lithium-ion cells[J]. Advanced Science, 2022, 9(29): https://doi.org/10.1002/advs.202200630. |
9 | DU K D, ANG E H, WU X L, et al. Progresses in sustainable recycling technology of spent lithium-ion batteries[J]. Energy & Environmental Materials, 2022, 5(4): 1012-1036. |
10 | MISHRA G, JHA R, MESHRAM A, et al. A review on recycling of lithium-ion batteries to recover critical metals[J]. Journal of Environmental Chemical Engineering, 2022, 10(6): 108534. |
11 | MA X T, AZHARI L, WANG Y. Li-ion battery recycling challenges[J]. Chem, 2021, 7(11): 2843-2847. |
12 | WANG Y, YIN H Y, AN L. An upcoming global challenge: Efficient recycling for end-of-life lithium-ion batteries[J]. Global Challenges, 2022, 6(12): 2200184. |
13 | RAJ T, CHANDRASEKHAR K, KUMAR A N, et al. Recycling of cathode material from spent lithium-ion batteries: Challenges and future perspectives[J]. Journal of Hazardous Materials, 2022, 429: 128312. |
14 | ROY J J, CAO B, MADHAVI S. A review on the recycling of spent lithium-ion batteries (LIBs) by the bioleaching approach[J]. Chemosphere, 2021, 282: 130944. |
15 | TAN J H, WANG Q, CHEN S, et al. Recycling-oriented cathode materials design for lithium-ion batteries: Elegant structures versus complicated compositions[J]. Energy Storage Materials, 2021, 41: 380-394. |
16 | ABDALLA A M, ABDULLAH M F, DAWOOD M K, et al. Innovative lithium-ion battery recycling: Sustainable process for recovery of critical materials from lithium-ion batteries[J]. Journal of Energy Storage, 2023, 67: 107551. |
17 | BAUM Z J, BIRD R E, YU X A, et al. Lithium-ion battery recycling─Overview of techniques and trends[J]. ACS Energy Letters, 2022, 7(2): 712-719. |
18 | MROZIK W, ALI RAJAEIFAR M, HEIDRICH O, et al. Environmental impacts, pollution sources and pathways of spent lithium-ion batteries[J]. Energy & Environmental Science, 2021, 14(12): 6099-6121. |
19 | 王韵珂, 延卫, 万邦隆, 等. 废旧锂电池磷酸铁锂正极材料回收工艺研究进展[J]. 云南化工, 2022, 49(6): 1-6. |
WANG Y K, YAN W, WAN B L, et al. Progress in recycling technology of lithium iron phosphate cathode materials for spent lithium-ion battery[J]. Yunnan Chemical Technology, 2022, 49(6): 1-6. | |
20 | 苏勇, 周宏喜, 卢世杰. 废旧动力电池资源化回收的放电试验线设计[J]. 中国资源综合利用, 2021, 39(9): 23-25. |
SU Y, ZHOU H X, LU S J. Design of discharge test line for recycling waste power batteries[J]. China Resources Comprehensive Utilization, 2021, 39(9): 23-25. | |
21 | FANG Z, DUAN Q L, PENG Q, et al. Comparative study of chemical discharge strategy to pretreat spent lithium-ion batteries for safe, efficient, and environmentally friendly recycling[J]. Journal of Cleaner Production, 2022, 359(22): 132116.1- 32116.12 |
22 | FAN B L, CHEN X P, ZHOU T, et al. A sustainable process for the recovery of valuable metals from spent lithium-ion batteries[J]. Waste Management & Research: the Journal for a Sustainable Circular Economy, 2016, 34(5): 474-481. |
23 | WERNER D M, MÜTZE T, PEUKER U A. Influence of pretreatment strategy on the crushing of spent lithium-ion batteries[J]. Metals, 2022, 12(11): 1839. |
24 | YU J D, TAN Q Y, LI J H. Exploring a green route for recycling spent lithium-ion batteries: Revealing and solving deep screening problem[J]. Journal of Cleaner Production, 2020, 255: 120269. |
25 | ZHU Y B, DING Q, ZHAO Y M, et al. Study on the process of harmless treatment of residual electrolyte in battery disassembly[J]. Waste Management & Research: the Journal for a Sustainable Circular Economy, 2020, 38(11): 1295-1300. |
26 | HUANG Z, LIU F, MAKUZA B, et al. Metal reclamation from spent lithium-ion battery cathode materials: Directional conversion of metals based on hydrogen reduction[J]. ACS Sustainable Chemistry & Engineering, 2022, 10(2): 756-765. |
27 | TAO R, XING P, LI H Q, et al. Full-component pyrolysis coupled with reduction of cathode material for recovery of spent LiNixCoyMnzO2 lithium-ion batteries[J]. ACS Sustainable Chemistry & Engineering, 2021, 9(18): 6318-6328. |
28 | HUANG H L, LIU C W, SUN Z. Transformation and migration mechanism of fluorine-containing pollutants in the pyrolysis process of spent lithium-ion battery[J]. Journal of Hazardous Materials, 2022, 435: 128974. |
29 | LUIS V, LIAN Z, BARBARA E, et al. Effect of lithium ion on the separation of electrode materials in spent lithium ion batteries using froth flotation[J]. Separation and Purification Technology, 2023, 311: doi: 10.1016/j.seppur.2023.123241. |
30 | MA X S, GE P, WANG L S, et al. The recycling of spent lithium-ion batteries: Crucial flotation for the separation of cathode and anode materials[J]. Molecules, 2023, 28(10): 4081. |
31 | GAO Y, ZHANG J L, JIN H, et al. Regenerating spent graphite from scrapped lithium-ion battery by high-temperature treatment[J]. Carbon, 2022, 189: 493-502. |
32 | YANG L, XI G X, XI Y B. Recovery of Co, Mn, Ni, and Li from spent lithium ion batteries for the preparation of LiNixCoyMnzO2 cathode materials[J]. Ceramics International, 2015, 41(9): 11498-11503. |
33 | KONG L Y, LIU F G, HU X W, et al. An improved pretreatment method for recovering cathode materials from lithium-ion battery: Ultrasonic-assisted NaOH-enhanced dissolving[J]. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects, 2023, 45(1): 877-887. |
34 | WANG H, LIU C, QU G R, et al. Study on pyrolysis pretreatment characteristics of spent lithium-ion batteries[J]. Separations, 2023, 10(4): doi: 10.3390/separations10040259. |
35 | MENG Q, ZHANG Y J, DONG P. A combined process for cobalt recovering and cathode material regeneration from spent LiCoO2 batteries: Process optimization and kinetics aspects[J]. Waste Management, 2018, 71: 372-380. |
36 | WANG M M, TAN Q Y, LIU L L, et al. A facile, environmentally friendly, and low-temperature approach for decomposition of polyvinylidene fluoride from the cathode electrode of spent lithium-ion batteries[J]. ACS Sustainable Chemistry & Engineering, 2019, 7(15): 12799-12806. |
37 | ZHANG X X, BIAN Y F, XU S, et al. Innovative application of acid leaching to regenerate Li(Ni1/3Co1/3Mn1/3)O2 cathodes from spent lithium-ion batteries[J]. ACS Sustainable Chemistry & Engineering, 2018, 6(5): 5959-5968. |
38 | PARK A, JUNG J Y, KIM S, et al. Crystallization behavior of polyvinylidene fluoride (PVDF) in NMP/DMF solvents: A molecular dynamics study[J]. RSC Advances, 2023, 13(19): 12917-12924. |
39 | HE L P, SUN S Y, SONG X F, et al. Recovery of cathode materials and Al from spent lithium-ion batteries by ultrasonic cleaning[J]. Waste Management, 2015, 46: 523-528. |
40 | 李春艳. 废旧三元锂离子电池中镍钴锰锂的分离回收研究[D]. 徐州: 中国矿业大学, 2022. |
LI C Y. Study on separation and recovery of nickel cobalt manganese lithium from waste ternary lithium ion batteries[D]. Xuzhou: China University of Mining and Technology, 2022. | |
41 | SENĆANSKI J, BAJUK-BOGDANOVIĆ D, MAJSTOROVIĆ D, et al. The synthesis of Li(CoMnNi)O2 cathode material from spent-Li ion batteries and the proof of its functionality in aqueous lithium and sodium electrolytic solutions[J]. Journal of Power Sources, 2017, 342: 690-703. |
42 | REN G X, XIAO S W, XIE M Q, et al. Recovery of valuable metals from spent lithium ion batteries by smelting reduction process based on FeO-SiO2-Al2O3 slag system[J]. Transactions of Nonferrous Metals Society of China, 2017, 27(2): 450-456. |
43 | HU X F, MOUSA E, YE G Z. Recovery of Co, Ni, Mn, and Li from Li-ion batteries by smelting reduction-Part II: A pilot-scale demonstration[J]. Journal of Power Sources, 2021, 483: 229089. |
44 | HUANG K, XIONG H, DONG H L, et al. Carbon thermal reduction of waste ternary cathode materials and wet magnetic separation based on Ni/MnO nanocomposite particles[J]. Process Safety and Environmental Protection, 2022, 165: 278-285. |
45 | JIANG H D, LI Z H, XIE W N, et al. Study on the thermal reduction effect of organic components in spent ternary lithium battery cathode active materials[J]. Waste Management, 2022, 148: 33-42. |
46 | MA S B, LIU F P, LI K B, et al. Separation of Li and Al from spent ternary Li-ion batteries by in situ aluminum‑carbon reduction roasting followed by selective leaching[J]. Hydrometallurgy, 2022, 213: 105941. |
47 | LIN J, CUI C, ZHANG X D, et al. Closed-loop selective recycling process of spent LiNixCoyMn1- x- yO2 batteries by thermal-driven conversion[J]. Journal of Hazardous Materials, 2022, 424: 127757. |
48 | YANG J, ZHANG Z L, ZHANG G, et al. Process study of chloride roasting and water leaching for the extraction of valuable metals from spent lithium-ion batteries[J]. Hydrometallurgy, 2021, 203: 105638. |
49 | WEN J X, LEE M S. Recovery of nickel and cobalt metal powders from the leaching solution of spent lithium-ion battery by solvent extraction and chemical reduction[J]. Mineral Processing and Extractive Metallurgy Review, 2023: 1-11. |
50 | LI C Y, DAI G F, LIU R Y, et al. Separation and recovery of nickel cobalt manganese lithium from waste ternary lithium-ion batteries[J]. Separation and Purification Technology, 2023, 306: 122559. |
51 | ILYAS S, RANJAN SRIVASTAVA R, SINGH V K, et al. Recovery of critical metals from spent Li-ion batteries: Sequential leaching, precipitation, and cobalt-nickel separation using Cyphos IL104[J]. Waste Management, 2022, 154: 175-186. |
52 | KONG J, ZHOU S Y, HE T, et al. A novel electrochemical redox method for the simultaneous recovery of spent lithium-ion battery cathodes and anodes[J]. Green Chemistry, 2023, 25(10): 3956-3965. |
53 | FAN X P, SONG C H, LU X F, et al. Separation and recovery of valuable metals from spent lithium-ion batteries via concentrated sulfuric acid leaching and regeneration of LiNi1/3Co1/3Mn1/3O2[J]. Journal of Alloys and Compounds, 2021, 863: 158775. |
54 | GUIMARÃES L F, BOTELHO A B Jr, ESPINOSA D C R. Sulfuric acid leaching of metals from waste Li-ion batteries without using reducing agent[J]. Minerals Engineering, 2022, 183: 107597. |
55 | GU K H, ZHENG W P, DING B D, et al. Comprehensive extraction of valuable metals from waste ternary lithium batteries via roasting and leaching: Thermodynamic and kinetic studies[J]. Minerals Engineering, 2022, 186: 107736. |
56 | XING L, BAO J R, ZHOU S Y, et al. Ultra-fast leaching of critical metals from spent lithium-ion batteries cathode materials achieved by the synergy-coordination mechanism[J]. Chemical Engineering Journal, 2021, 420: 129593. |
57 | GU S, KONG J, XING L, et al. Insights into the coordination enhanced leaching mechanism of spent lithium-ion batteries cathode materials[J]. Journal of Environmental Chemical Engineering, 2022, 10 (3): 107745. |
58 | CHEN H, GU S, GUO Y X, et al. Leaching of cathode materials from spent lithium-ion batteries by using a mixture of ascorbic acid and HNO3[J]. Hydrometallurgy, 2021, 205: 105746. |
59 | KIM J, KIM S, LIM J, et al. Sequential flue gas utilization for sustainable leaching and metal precipitation of spent lithium-ion battery cathode material: Process design and techno-economic analysis[J]. Journal of Cleaner Production, 2022, 380: 134988. |
60 | 巩勤学, 刘勇奇, 王杜, 等. 废旧锂电池正极极片粉中钴的浸出[J]. 有色金属(冶炼部分), 2020(5): 26-30. |
GONG Q X, LIU Y Q, WANG D, et al. Leaching of cobalt from anode powder of waste lithium battery[J]. Nonferrous Metals (Extractive Metallurgy), 2020(5): 26-30. | |
61 | YAO L, XI Y B, HAN H J, et al. LiMn2O4 prepared from waste lithium ion batteries through sol-gel process[J]. Journal of Alloys and Compounds, 2021, 868: 159222. |
62 | HU Q, LUO Z Y, ZHOU H X, et al. High-efficiency selective leaching of valuable metals from spent lithium-ion batteries: Effects of Na2S2O8 on the leaching of metals[J]. Waste Management, 2023, 167: 204-212. |
63 | HU G R, GONG Y F, PENG Z D, et al. Direct recycling strategy for spent lithium iron phosphate powder: An efficient and wastewater-free process[J]. ACS Sustainable Chemistry & Engineering, 2022, 10(35): 11606-11616. |
64 | NING P C, MENG Q, DONG P, et al. Recycling of cathode material from spent lithium ion batteries using an ultrasound-assisted DL-malic acid leaching system[J]. Waste Management, 2020, 103: 52-60. |
65 | CHEN M J, WANG R, QI Y P, et al. Cobalt and lithium leaching from waste lithium ion batteries by glycine[J]. Journal of Power Sources, 2021, 482: 228942. |
66 | LIU B R, HUANG Q, SU Y F, et al. Synthesis of Ni-rich cathode material from maleic acid-leachate of spent lithium-ion batteries[J]. ACS Sustainable Chemistry & Engineering, 2020, 8(21): 7839-7850. |
67 | WANG Y, XU Z Q, ZHANG X, et al. A green process to recover valuable metals from the spent ternary lithium-ion batteries[J]. Separation and Purification Technology, 2022, 299: 121782. |
68 | ZHUANG L Q, SUN C H, ZHOU T, et al. Recovery of valuable metals from LiNi0.5Co0.2Mn0.3O2 cathode materials of spent Li-ion batteries using mild mixed acid as leachant[J]. Waste Management, 2019, 85: 175-185. |
69 | LIU X F, HUANG K, XIONG H, et al. Ammoniacal leaching process for the selective recovery of value metals from waste lithium-ion batteries[J]. Environmental Technology, 2023, 44(2): 211-225. |
70 | YU J C, MA B Z, QIU Z J, et al. Separation and recovery of valuable metals from ammonia leaching solution of spent lithium-ion batteries[J]. ACS Sustainable Chemistry & Engineering, 2023, 11(26): 9738-9750. |
71 | JEGAN ROY J, SRINIVASAN M, CAO B. Bioleaching as an eco-friendly approach for metal recovery from spent NMC-based lithium-ion batteries at a high pulp density[J]. ACS Sustainable Chemistry & Engineering, 2021, 9(8): 3060-3069. |
72 | DO M P, JEGAN ROY J, CAO B, et al. Green closed-loop cathode regeneration from spent NMC-based lithium-ion batteries through bioleaching[J]. ACS Sustainable Chemistry & Engineering, 2022, 10(8): 2634-2644. |
73 | LUO Y, YIN C Z, OU L M, et al. Highly efficient dissolution of the cathode materials of spent Ni-Co-Mn lithium batteries using deep eutectic solvents[J]. Green Chemistry, 2022, 24(17): 6562-6570. |
74 | TRAN M K, RODRIGUES M T F, KATO K, et al. Deep eutectic solvents for cathode recycling of Li-ion batteries[J]. Nature Energy, 2019, 4(4): 339-345. |
75 | LIU Y W, JIANG W, LING M, et al. Revealing lithium conFig.uration in aged layered oxides for effective regeneration[J]. ACS Applied Materials & Interfaces, 2023, 15(7): 9465-9474. |
76 | ZHAO Y L, YUAN X Z, JIANG L B, et al. Regeneration and reutilization of cathode materials from spent lithium-ion batteries[J]. Chemical Engineering Journal, 2020, 383: 123089. |
77 | HE L P, SUN S Y, YU J G. Performance of LiNi1/3Co1/3Mn1/3O2 prepared from spent lithium-ion batteries by a carbonate co-precipitation method[J]. Ceramics International, 2018, 44(1): 351-357. |
78 | CHEN X Q, YANG C F, YANG Y B, et al. Co-precipitation preparation of Ni-Co-Mn ternary cathode materials by using the sources extracting directly from spent lithium-ion batteries[J]. Journal of Alloys and Compounds, 2022, 909: 164691. |
79 | REFLY S, FLOWERI O, MAYANGSARI T R, et al. Regeneration of LiNi1/3Co1/3Mn1/3O2 cathode active materials from end-of-life lithium-ion batteries through ascorbic acid leaching and oxalic acid coprecipitation processes[J]. ACS Sustainable Chemistry & Engineering, 2020, 8(43): 16104-16114. |
80 | YANG Y, SONG S L, JIANG F, et al. Short process for regenerating Mn-rich cathode material with high voltage from mixed-type spent cathode materials via a facile approach[J]. Journal of Cleaner Production, 2018, 186: 123-130. |
81 | YAO L, YAO H S, XI G X, et al. Recycling and synthesis of LiNi1/3Co1/3Mn1/3O2 from waste lithium ion batteries using D, L-malic acid[J]. RSC Advances, 2016, 6(22): 17947-17954. |
82 | LEE S W, KIM H, KIM M S, et al. Improved electrochemical performance of LiNi0.6Co0.2Mn0.2O2 cathode material synthesized by citric acid assisted sol-gel method for lithium ion batteries[J]. Journal of Power Sources, 2016, 315: 261-268. |
83 | LI W W, YAO L, ZHANG X J, et al. The effect of chelating agent on synthesis and electrochemical properties of LiNi0.6Co0.2Mn0.2O2[J]. SN Applied Sciences, 2020, 2(4): 1-8. |
No related articles found! |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||