储能科学与技术 ›› 2023, Vol. 12 ›› Issue (11): 3287-3298.doi: 10.19799/j.cnki.2095-4239.2023.0488
• 储能材料与器件 • 下一篇
收稿日期:
2023-07-17
修回日期:
2023-08-02
出版日期:
2023-11-05
发布日期:
2023-11-16
通讯作者:
赵悠曼
E-mail:youymanm@163.com
作者简介:
赵悠曼(1984—),女,硕士,工程师,主要从事锂离子电池的开发及应用,E-mail:youymanm@163.com。
基金资助:
Youman ZHAO1(), Yang HUANG1,2, Li XIONG1, Haijun LIN1
Received:
2023-07-17
Revised:
2023-08-02
Online:
2023-11-05
Published:
2023-11-16
Contact:
Youman ZHAO
E-mail:youymanm@163.com
摘要:
近年来,有理论研究认为硫系锂离子导体材料的硫阴离子框架都具有类bcc (body-centered-cubic)?的体心立方堆叠结构。因此,在探索新的硫系锂离子导体时,应从材料库中优选那些具有类bcc硫阴离子框架结构的材料。然而对于设计新型锂离子导体而言,这种设计准则过于简略。本团队基于前人工作基础,对硫系化合物中锂离子的传输和扩散机制进行了研究,并讨论了影响锂离子局域跳跃的结构环境和影响锂离子宏观扩散的化学环境。研究发现,在硫系化合物中,不与过渡金属配位的0-TM通道对于锂离子在晶位之间的跳跃具有决定性的作用;而要形成宏观扩散网络,晶体结构中必须含有足够多的0-TM通道。基于这一认识,本团队探索并设计了几种新的硫系锂离子导体,验证了硫系化合物结构特征与其功能特征之间的关联性。这一工作深化了bcc结构设计准则,为发展新型锂离子导体提供了更为明确的理论方向。
中图分类号:
赵悠曼, 黄旸, 熊立, 林海军. 从材料结构特征到功能特征——[J]. 储能科学与技术, 2023, 12(11): 3287-3298.
Youman ZHAO, Yang HUANG, Li XIONG, Haijun LIN. From material structural feature to the functional feature[J]. Energy Storage Science and Technology, 2023, 12(11): 3287-3298.
1 | SUN Y K. Direction for development of next-generation lithium-ion batteries[J]. ACS Energy Letters, 2017, 2(12): 2694-2695. |
2 | GOODENOUGH J B, KIM Y. Challenges for rechargeable Li batteries[J]. Chemistry of Materials, 2010, 22(3): 587-603. |
3 | LI M, WANG C S, CHEN Z W, et al. New concepts in electrolytes[J]. Chemical Reviews, 2020, 120(14): 6783-6819. |
4 | LIANG J N, LUO J, SUN Q, et al. Recent progress on solid-state hybrid electrolytes for solid-state lithium batteries[J]. Energy Storage Materials, 2019, 21: 308-334. |
5 | HE Y M, LU C Y, LIU S, et al. Interfacial incompatibility and internal stresses in all-solid-state lithium ion batteries[J]. Advanced Energy Materials, 2019, 9(36): doi: 10.1002/aenm.201901810. |
6 | LV F, WANG Z Y, SHI L Y, et al. Challenges and development of composite solid-state electrolytes for high-performance lithium ion batteries[J]. Journal of Power Sources, 2019, 441: 227175. |
7 | YU C, GANAPATHY S, VAN ECK E R H, et al. Accessing the bottleneck in all-solid state batteries, lithium-ion transport over the solid-electrolyte-electrode interface[J]. Nature Communications, 2017, 8(1): 1086. |
8 | WAN J, XIE J, MACKANIC D G, et al. Status, promises, and challenges of nanocomposite solid-state electrolytes for safe and high performance lithium batteries[J]. Materials Today Nano, 2018, 4: 1-16. |
9 | LIU L L, XU J R, WANG S, et al. Practical evaluation of energy densities for sulfide solid-state batteries[J]. eTransportation, 2019, 1(C): 100010. |
10 | HAYASHI A, SAKUDA A, TATSUMISAGO M. Development of sulfide solid electrolytes and interface formation processes for bulk-type all-solid-state Li and Na batteries[J]. Frontiers in Energy Research, 2016, 4: 25. |
11 | LIU D, ZHU W, FENG Z, et al. Recent progress in sulfide-based solid electrolytes for Li-ion batteries[J]. Materials Science and Engineering: B, 2016, 213: 169-176. |
12 | YU C A, GANAPATHY S, DE KLERK N J J, et al. Unravelling Li-ion transport from picoseconds to seconds: Bulk versus interfaces in an argyrodite Li6PS5Cl-Li2S all-solid-state Li-ion battery[J]. Journal of the American Chemical Society, 2016, 138(35): 11192-11201. |
13 | KAMAYA N, HOMMA K, YAMAKAWA Y, et al. A lithium superionic conductor[J]. Nature Materials, 2011, 10(9): 682-686. |
14 | KUHN A, GERBIG O, ZHU C B, et al. A new ultrafast superionic Li-conductor: Ion dynamics in Li11Si2PS12 and comparison with other tetragonal LGPS-type electrolytes[J]. Physical Chemistry Chemical Physics, 2014, 16(28): 14669-14674. |
15 | BRON P, JOHANSSON S, ZICK K, et al. Li10SnP2S12: An affordable lithium superionic conductor[J]. Journal of the American Chemical Society, 2013, 135(42): 15694-15697. |
16 | SEINO Y, OTA T, TAKADA K, et al. A sulphide lithium super ion conductor is superior to liquid ion conductors for use in rechargeable batteries[J]. Energy & Environmental Science, 2014, 7(2): 627-631. |
17 | WANG Y, RICHARDS W D, ONG S P, et al. Design principles for solid-state lithium superionic conductors[J]. Nature Materials, 2015, 14(10): 1026-1031. |
18 | Clement R J, Lun Z, Ceder G. Cation-disordered rocksalt transition metal oxides and oxyfluorides for high energy lithium-ion cathodes[J]. Energy & environmental science. 2020, 13(2): 345-373. |
19 | HE X F, BAI Q, LIU Y S, et al. Crystal structural framework of lithium super-ionic conductors[J]. Advanced Energy Materials, 2019, 9(43): doi: 10.1002/aenm.201902078. |
20 | RICHARDS W D, WANG Y, MIARA L J, et al. Design of Li1+2 xZn1- xPS4, a new lithium ion conductor[J]. Energy & Environmental Science, 2016, 9(10): 3272-3278. |
21 | SUZUKI N, RICHARDS W D, WANG Y, et al. Synthesis and electrochemical properties of I-4-type Li1+2 xZn1- xPS4 solid electrolyte[J]. Chemistry of Materials, 2018, 30(7): 2236-2244. |
22 | KAUP K, LALÈRE F, HUQ A, et al. Correlation of structure and fast ion conductivity in the solid solution series Li1+2 xZn1- xPS4[J]. Chemistry of Materials, 2018, 30(3): 592-596. |
23 | SHYUE P O, WILLIAM D R, ANUBHAV J, et al. Python materials genomics (pymatgen): A robust, open-source python library for materials analysis[J]. Computational Materials Science, 2013, 68: 314-319. |
24 | KRESSE G, HAFNER J. Ab initio molecular dynamics for liquid metals[J]. Physical Review B, 1993, 47(1): 558-561. |
25 | KRESSE G, FURTHMÜLLER J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set[J]. Physical Review B, 1996, 54(16): 11169-11186. |
26 | BLÖCHL P E. Projector augmented-wave method[J]. Physical Review B, Condensed Matter, 1994, 50(24): 17953-17979. |
27 | KRESSE G, JOUBERT D. From ultrasoft pseudopotentials to the projector augmented-wave method[J]. Physical Review B, 1999, 59(3): 1758-1775. |
28 | KRESSE G, HAFNER J. Ab initio molecular dynamics for open-shell transition metals[J]. Physical Review B, 1993, 48(17): 13115-13118. |
29 | PERDEW J P, BURKE K, ERNZERHOF M. Generalized gradient approximation made simple[J]. Physical Review Letters, 1996, 77(18): 3865-3868. |
30 | HENKELMAN G, UBERUAGA B P, JóNSSON H. A climbing image nudged elastic band method for finding saddle points and minimum energy paths[J]. The Journal of Chemical Physics, 2000, 113(22): 9901. |
31 | HENKELMAN G, JÓNSSON H. Improved tangent estimate in the nudged elastic band method for finding minimum energy paths and saddle points[J]. The Journal of Chemical Physics, 2000, 113(22): 9978-9985. |
32 | TOGO A, TANAKA I. First principles phonon calculations in materials science[J]. Scripta Materialia, 2015, 108: 1-5. |
33 | TOGO A, CHAPUT L, TANAKA I, et al. First-principles phonon calculations of thermal expansion in Ti3SiC2, Ti3AlC2, and Ti3GeC2[J]. Physical Review B, 2010, 81(17): 174301. |
34 | VERLET L. Computer "experiments" on classical fluids. I. thermodynamical properties of lennard-jones molecules[J]. Physical Review, 1967, 159(1): 98-103. |
35 | NOSÉ S. A unified formulation of the constant temperature molecular dynamics methods[J]. The Journal of Chemical Physics, 1984, 81(1): 511-519. |
36 | HOOVER W G. Canonical dynamics: Equilibrium phase-space distributions[J]. Physical Review A, 1985, 31(3): 1695-1697. |
37 | STAUFFER D, AHARONY A. Introduction to percolation theory[M]. London: Taylor & Francis, 2018. |
38 | EWING R, HUNT A. Percolation theory for flow in porous media[M]. Berlin, Heidelberg: Springer Berlin Heidelberg, 2009. |
39 | NEWMAN M E, ZIFF R M. Efficient Monte Carlo algorithm and high-precision results for percolation[J]. Physical Review Letters, 2000, 85(19): 4104-4107. |
40 | CEDER G, ONG S P, WANG Y. Predictive modeling and design rules for solid electrolytes[J]. MRS Bulletin, 2018, 43(10): 746-751. |
41 | MEHRER, H. Diffusion in solids: Fundamentals, methods, materials, diffusion-controlled processes[J]. Springer series in solid state science, 2007, 155. |
42 | HE X F, ZHU Y Z, MO Y F. Origin of fast ion diffusion in super-ionic conductors[J]. Nature Communications, 2017, 8: 15893. |
43 | URBAN A, LEE J, CEDER G. The configurational space of rocksalt-type oxides for high-capacity lithium battery electrodes[J]. Advanced Energy Materials, 2014, 4(13): 1400478. |
44 | LEE J, URBAN A, LI X, et al. Unlocking the potential of cation-disordered oxides for rechargeable lithium batteries[J]. Science, 2014, 343(6170): 519-522. |
45 | JI H W, URBAN A, KITCHAEV D A, et al. Hidden structural and chemical order controls lithium transport in cation-disordered oxides for rechargeable batteries[J]. Nature Communications, 2019, 10: 592. |
46 | URBAN A, MATTS I, ABDELLAHI A, et al. Computational design and preparation of cation-disordered oxides for high-energy-density Li-ion batteries[J]. Advanced Energy Materials, 2016, 6(15): 1600488. |
47 | HUANG Y, LIU L, ZHU Y Y, et al. A new model on cation distribution in cation-disordered Li1+ xTM1-xO2 cathodes[J]. Solid State Ionics, 2020, 351: 115341. |
48 | HOMMA K, YONEMURA M, KOBAYASHI T, et al. Crystal structure and phase transitions of the lithium ionic conductor Li3PS4[J]. Solid State Ionics, 2010, 182(1): 53-58. |
49 | IIKUBO S, SHIMOYAMA K, KAWANO S, et al. Novel stable structure of Li3PS4 predicted by evolutionary algorithm under high-pressure[J]. AIP Advances, 2018, 8(1): 15008. |
50 | KIM J S, JUNG W D, CHOI S J, et al. Thermally induced S‑sublattice transition of Li3PS4 for fast lithium-ion conduction[J]. J. Phys. Chem. Lett. 2018, 9, 5592-5597. |
51 | YANG J J, TSE J S. First-principles molecular simulations of Li diffusion in solid electrolytes Li3PS4[J]. Computational Materials Science, 2015, 107: 134-138. |
52 | LIM M S, JHI S H. First-principles study of lithium-ion diffusion in β-Li3PS4 for solid-state electrolytes[J]. Current Applied Physics, 2018, 18(5): 541-545. |
53 | HUANG Y, WU K, CHENG J N, et al. Li2ZnGeS4: A promising diamond-like infrared nonlinear optical material with high laser damage threshold and outstanding second-harmonic generation response[J]. Dalton Transactions, 2019, 48(14): 4484-4488. |
54 | LI G M, CHU Y, ZHOU Z X. From AgGaS2 to Li2ZnSiS4: Realizing impressive high laser damage threshold together with large second-harmonic generation response[J]. Chemistry of Materials, 2018, 30(3): 602-606. |
55 | ZHOU L D, ASSOUD A, SHYAMSUNDER A, et al. An entropically stabilized fast-ion conductor: Li3.25[Si0.25P0.75]S4[J]. Chemistry of Materials, 2019, 31(19): 7801-7811. |
56 | HARM S, HATZ A K, MOUDRAKOVSKI I, et al. Lesson learned from NMR: Characterization and ionic conductivity of LGPS-like Li7SiPS8[J]. Chemistry of Materials, 2019, 31(4): 1280-1288. |
57 | KANNO R, MURAYAMA M. Lithium ionic conductor thio-LISICON the Li2S-GeS2-P2S5 system[J]. Journal of the Electrochemical Society, 2001, 148(7): A742-A746. |
58 | LEKSE J W, LEVERETT B M, LAKE C H, et al. Synthesis, physicochemical characterization and crystallographic twinning of Li2ZnSnS4[J]. Journal of Solid State Chemistry, 2008, 181(12): 3217-3222. |
59 | ZHANG J H, CLARK D J, BRANT J A, et al. α -Li2ZnGeS4: A wide-bandgap diamond-like semiconductor with excellent balance between laser-induced damage threshold and second harmonic generation response[J]. Chemistry of Materials, 2020, 32(20): 8947-8955. |
60 | LI G M, CHU Y, LI J, et al. Li2CdSiS4, a promising IR NLO material with a balanced Eg and SHG response originating from the effect of Cd with d10 configuration[J]. Dalton Transactions, 2020, 49(6): 1975-1980. |
61 | LI Y L, FAN W L, SUN H G, et al. Electronic, optical and lattice dynamic properties of the novel diamond-like semiconductors Li2CdGeS4 and Li2CdSnS4[J]. Journal of Physics: Condensed Matter, 2011, 23(22): 225401. |
62 | BRANT J A, CLARK D J, KIM Y S, et al. Outstanding laser damage threshold in Li2MnGeS4 and tunable optical nonlinearity in diamond-like semiconductors[J]. Inorganic Chemistry, 2015, 54(6): 2809-2819. |
[1] | 汪振毅, 张赛, 胡世旺. 锂离子电池电极微结构的分形建模及热-化耦合[J]. 储能科学与技术, 2022, 11(11): 3574-3582. |
[2] | 邵素霞, 朱振东, 彭文, 代娟, 吴浩. 充放电过程液相锂离子浓度变化及机理[J]. 储能科学与技术, 2021, 10(3): 1187-1195. |
[3] | 李 钊1,孙现众1,2,李 晨1,2,张 熊1,2,王 凯1,2,刘文杰1,3,张 澄2,马衍伟1,2. 介孔石墨烯/炭黑复合导电剂在锂离子电容器负极中的应用[J]. 储能科学与技术, 2017, 6(6): 1264-. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||