| 1 | YAO M C, LI M, WANG Y F, et al. Analysis on characteristics and operation mode of direct solar collector coupled heat pump drying system[J]. Renewable Energy, 2023, 206: 223-238. | 
																													
																						| 2 | IEA. Heating[R/OL]. https://www.Iea.org/reports/heating. | 
																													
																						| 3 | IEA. Heat pumps[R/OL]. https://www.iea.org/reports/heat-pumps. | 
																													
																						| 4 | LI J, ZHANG Y, LI M, et al. Study on heating performance of solar-assisted heat pump drying system under large temperature difference[J]. Solar Energy, 2021, 229: 148-161. | 
																													
																						| 5 | DU K, CALAUTIT J, WANG Z H, et al. A review of the applications of phase change materials in cooling, heating and power generation in different temperature ranges[J]. Applied Energy, 2018, 220: 242-273. | 
																													
																						| 6 | 次恩达, 王会, 李晓卿, 等. 六水硝酸镁-硝酸锂共晶盐/膨胀石墨复合相变材料的制备及性能强化[J]. 储能科学与技术, 2022, 11(1): 30-37. | 
																													
																						|  | CI E D, WANG H, LI X Q, et al. Preparation and property enhancement of magnesium nitrate hexahydrate-lithium nitrate eutectic/expanded graphite composite phase change materials[J]. Energy Storage Science and Technology, 2022, 11(1): 30-37. | 
																													
																						| 7 | 白金刚, 苑正己, 刘雨, 等. 癸酸-石蜡/石墨烯气凝胶定形相变材料的制备及热物性分析[J]. 化工进展, 2022, 41(8): 4441-4448. | 
																													
																						|  | BAI J G, YUAN Z J, LIU Y, et al. Fabrication and thermal properties of decanoic acid-paraffin/graphene aerogel form-stable phase change materials[J]. Chemical Industry and Engineering Progress, 2022, 41(8): 4441-4448. | 
																													
																						| 8 | MOHAMMED H I. Discharge improvement of a phase change material-air-based thermal energy storage unit for space heating applications using metal foams in the air sides[J]. Heat Transfer, 2022, 51(5): 3830-3852. | 
																													
																						| 9 | GUO S P, ZHAO J, WANG W L, et al. Numerical study of the improvement of an indirect contact mobilized thermal energy storage container[J]. Applied Energy, 2016, 161: 476-486. | 
																													
																						| 10 | 沈永亮, 张朋威, 刘淑丽. 肋片增强式梯级相变储热系统放热特性的三维数值[J]. 储能科学与技术, 2022, 11(11): 3558-3565. | 
																													
																						|  | SHEN Y L, ZHANG P W, LIU S L. Three-dimensional numerical value of heat release characteristics of stepped phase change heat storage system enhanced by fins[J]. Energy Storage Science and Technology, 2022, 11(11): 3558-3565. | 
																													
																						| 11 | LIU F, ZHU W Q, ZHAO J. Model-based dynamic optimal control of a CO2 heat pump coupled with hot and cold thermal storages[J]. Applied Thermal Engineering, 2018, 128: 1116-1125. | 
																													
																						| 12 | ELBAHJAOUI R, EL QARNIA H. Numerical study of a shell-and-tube latent thermal energy storage unit heated by laminar pulsed fluid flow[J]. Heat Transfer Engineering, 2017, 38(17): 1466-1480. | 
																													
																						| 13 | FARID M M, KANZAWA A. Thermal performance of a heat storage module using PCM's with different melting temperatures: Mathematical modeling[J]. Journal of Solar Energy Engineering, 1989, 111(2): 152-157. | 
																													
																						| 14 | SEENIRAJ R V, LAKSHMI NARASIMHAN N. Performance enhancement of a solar dynamic LHTS module having both fins and multiple PCMs[J]. Solar Energy, 2008, 82(6): 535-542. | 
																													
																						| 15 | XU H J, ZHAO C Y. Thermal efficiency analysis of the cascaded latent heat/cold storage with multi-stage heat engine model[J]. Renewable Energy, 2016, 86: 228-237. | 
																													
																						| 16 | CHENG X W, ZHAI X Q. Thermal performance analysis and optimization of a cascaded packed bed cool thermal energy storage unit using multiple phase change materials[J]. Applied Energy, 2018, 215: 566-576. | 
																													
																						| 17 | JIN X, WU F P, XU T, et al. Experimental investigation of the novel melting point modified phase-change material for heat pump latent heat thermal energy storage application[J]. Energy, 2021, 216: 119191. | 
																													
																						| 18 | KUPPAN T. Heat exchanger design handbook[M]. Oxford: Taylor & Francis Inc, 2020. | 
																													
																						| 19 | TAY N H S, BELUSKO M, BRUNO F. An effectiveness-NTU technique for characterising tube-in-tank phase change thermal energy storage systems[J]. Applied Energy, 2012, 91(1): 309-319. | 
																													
																						| 20 | HASHIN Z, SHTRIKMAN S. A variational approach to the theory of the effective magnetic permeability of multiphase materials[J]. Journal of Applied Physics, 1962, 33(10): 3125-3131. | 
																													
																						| 21 | XIA L, ZHANG P, WANG R Z. Preparation and thermal characterization of expanded graphite/paraffin composite phase change material[J]. Carbon, 2010, 48(9): 2538-2548. | 
																													
																						| 22 | WOODSIDE W, MESSMER J H. Thermal conductivity of porous media. I. Unconsolidated sands[J]. Journal of Applied Physics, 1961, 32(9): 1688-1699. | 
																													
																						| 23 | FENG Z, XIAO X. Thermal conductivity measurement of flexible composite phase-change materials based on the steady-state method[J]. Micromachines, 2022, 13(10): 1582. | 
																													
																						| 24 | XIAO X, ZHANG P, LI M. Thermal characterization of nitrates and nitrates/expanded graphite mixture phase change materials for solar energy storage[J]. Energy Conversion and Management, 2013, 73: 86-94. | 
																													
																						| 25 | 陶文铨. 传热学(第5版)[M]. 北京: 高等教育出版社, 2019. |