1 |
杨荣华. 产业融合背景下的新能源汽车技术发展趋势研究[J]. 时代汽车, 2022(1): 119-120.
|
|
YANG R H. Research on the development trend of new energy vehicle technology under the background of industrial convergence[J]. Auto Time, 2022(1): 119-120.
|
2 |
王芳, 王峥, 林春景, 等. 新能源汽车动力电池安全失效潜在原因分析[J]. 储能科学与技术, 2022, 11(5): 1411-1418.
|
|
WANG F, WANG Z, LIN C J, et al. Analysis on potential causes of safety failure of new energy vehicles[J]. Energy Storage Science and Technology, 2022, 11(5): 1411-1418.
|
3 |
欧阳陈志, 梁波, 刘燕平, 等. 锂离子动力电池热安全性研究进展[J]. 电源技术, 2014, 38(2): 382-385.
|
|
OUYANG C Z, LIANG B, LIU Y P, et al. Progress of thermal safety characteristics of high power lithium-ion batteries[J]. Chinese Journal of Power Sources, 2014, 38(2): 382-385.
|
4 |
葛瑞. 汽车动力电池系统防爆阀的选型与理论计算[J]. 上海汽车, 2021(3): 4-6, 13.
|
|
GE R. Selection and theoretical calculation of explosion-proof valve of EV power battery system[J]. Shanghai Auto, 2021(3): 4-6, 13.
|
5 |
蒋南希. 新能源汽车锂电池防爆盖结构设计[J]. 电源技术, 2018, 42(8): 1129-1133.
|
|
JIANG N X. Structure design of explosion proof cap for new energy vehicle[J]. Chinese Journal of Power Sources, 2018, 42(8): 1129-1133.
|
6 |
FINEGAN D P, SCHEEL M, ROBINSON J B, et al. In-operando high-speed tomography of lithium-ion batteries during thermal runaway[J]. Nature Communications, 2015, 6: 6924.
|
7 |
COMAN P T, RAYMAN S, WHITE R E. A lumped model of venting during thermal runaway in a cylindrical lithium cobalt oxide lithium-ion cell[J]. Journal of Power Sources, 2016, 307: 56-62.
|
8 |
FENG X N, REN D S, HE X M, et al. Mitigating thermal runaway of lithium-ion batteries[J]. Joule, 2020, 4(4): 743-770.
|
9 |
常修亮, 郑莉莉, 韦守李, 等. 锂离子电池热失控仿真研究进展[J]. 储能科学与技术, 2021, 10(6): 2191-2199.
|
|
CHANG X L, ZHENG L L, WEI S L, et al. Progress in thermal runaway simulation of lithium-ion batteries[J]. Energy Storage Science and Technology, 2021, 10(6): 2191-2199.
|
10 |
付一民, 周健, 盛军, 等. 基于某动力电池防水透气防爆阀的仿真研究[J]. 汽车实用技术, 2019(1): 1-3.
|
|
FU Y M, ZHOU J, SHENG J, et al. Simulation research on waterproof and ventilation explosion-proof valve based on a power battery[J]. Automobile Applied Technology, 2019(1): 1-3.
|
11 |
杜光超, 郑莉莉, 张志超, 等. 圆柱形高镍三元锂离子电池高温热失控实验研究[J]. 储能科学与技术, 2020, 9(1): 249-256.
|
|
DU G C, ZHENG L L, ZHANG Z C, et al. Experimental study on high temperature thermal runaway of cylindrical high nickel ternary lithium-ion batteries[J]. Energy Storage Science and Technology, 2020, 9(1): 249-256.
|
12 |
刘红, 沈少祥, 蒋兰芳, 等. 基于Fluent的船用防爆阀降压特性研究[J]. 机电工程, 2018, 35(10): 1053-1057.
|
|
LIU H, SHEN S X, JIANG L F, et al. Pressure-loss characteristics of marine explosion-proof valve based on Fluent[J]. Journal of Mechanical & Electrical Engineering, 2018, 35(10): 1053-1057.
|
13 |
朱飞成, 章军, 王芳. 基于壅塞流的恒负载气动系统的动态仿真[J]. 液压与气动, 2014(9): 123-127.
|
|
ZHU F C, ZHANG J, WANG F. The dynamic simulation of constant loaded pneumatic system based on the choked flow[J]. Chinese Hydraulics & Pneumatics, 2014(9): 123-127.
|
14 |
王玮, 田威. 管道阻塞特征对壅塞流的影响[J]. 液压与气动, 2014(6): 55-58, 62.
|
|
WANG W, TIAN W. Effect of pipe blockage characteristic on chocked flow[J]. Chinese Hydraulics & Pneumatics, 2014(6): 55-58, 62.
|
15 |
董军, 杨俊. 喷管内有摩擦流动的壅塞和临界参数[J]. 工程热物理学报, 2017, 38(12): 2537-2541.
|
|
DONG J, YANG J. Chock and critical parameters of frictional flow in nozzle[J]. Journal of Engineering Thermophysics, 2017, 38(12): 2537-2541.
|