储能科学与技术 ›› 2023, Vol. 12 ›› Issue (4): 1066-1074.doi: 10.19799/j.cnki.2095-4239.2022.0761

• 储能材料与器件 • 上一篇    下一篇

一步水热法制备三维石墨烯/Fe3O4 复合材料及其储锂性能

成雪莉1(), 张维福1, 罗城城1, 袁小亚1,2()   

  1. 1.重庆交通大学材料科学与工程学院,重庆 400074
    2.重庆诺奖二维材料研究院,重庆 400711
  • 收稿日期:2022-12-23 修回日期:2023-01-10 出版日期:2023-04-05 发布日期:2023-05-08
  • 通讯作者: 袁小亚 E-mail:2248553391@qq.com;yuanxy@cqjtu.edu.cn
  • 作者简介:成雪莉(1998—),女,硕士研究生,研究方向为锂离子电池负极材料,E-mail:2248553391@qq.com
  • 基金资助:
    国家自然科学基金(51402030);重庆市基础科学与前沿技术研究专项基金(cstc2017jcyjBX0028)

Preparation of three-dimensional graphene/Fe3O4 composites by one-step hydrothermal method and their lithium storage performance

Xueli CHENG1(), Weifu ZHANG1, Chengcheng LUO1, Xiaoya YUAN1,2()   

  1. 1.School of materials Science and Engineering, Chongqing Jiaotong University, Chongqing 400074, China
    2.Chongqing Nuojiang 2D Materials Research Institute, Chongqing 400711, China
  • Received:2022-12-23 Revised:2023-01-10 Online:2023-04-05 Published:2023-05-08
  • Contact: Xiaoya YUAN E-mail:2248553391@qq.com;yuanxy@cqjtu.edu.cn

摘要:

Fe3O4作为锂离子电池负极材料,在充放电时体积变化较大,导致其容量衰减严重。目前,碳包覆是解决这个问题的主要方式之一。本工作以氧化石墨烯(GO)和Fe2+为原料,用一步水热法合成了三维石墨烯片包覆Fe3O4纳米颗粒3DG@Fe3O4复合材料。使用傅里叶红外光谱(FT-IR)仪、热重分析(TGA)仪、X射线衍射(XRD)仪、拉曼光谱(Raman)仪、扫描电子显微镜(SEM)对复合物进行表征,研究结果表明,复合材料呈现石墨烯(G)片包覆Fe3O4纳米颗粒的三明治结构。同时采用了恒流充放电(GCPL)、循环伏安(CV)以及交流阻抗(EIS)等电化学测试方法,着重研究了Fe3O4含量对其电化学性能的影响,Fe3O4质量分数为83.2%的3DG@Fe3O4-2电极具有最高的比容量和循环性能,在0.1 A/g的电流密度下的首次放电比容量为1412.33 mAh/g,循环100次后的放电比容量为577 mAh/g,是纯Fe3O4电极材料经历100次循环后的6.5倍。一步水热合成方法具有操作简单、合成条件温和及无需额外添加还原剂等优点;制备的复合电极相比纯Fe3O4具有电极容量高、循环稳定性能好的优势,有助于推动Fe3O4基负极材料在电化学领域中的应用。

关键词: 水热法, 碳包覆, 四氧化三铁(Fe3O4), 锂离子电池, 负极材料

Abstract:

As a lithium-ion battery anode material, the Fe3O4 exhibits varying volume during charging and discharging, which results in serious capacity degradation. This problem can be solved using carbon coating. Thus, in this paper, three-dimensional graphene-coated Fe3O4 nanoparticle(3DG@Fe3O4) composites were synthesized by one-step hydrothermal method using graphene oxide (GO) and Fe2+ as raw materials. The composites were characterized by a Fourier transform infrared spectrometer, thermal gravimetric analyzer, X-ray diffractometer, Raman spectrometer and scanning electron microscopy. The results showed that the composites have a "sandwich" structure of graphene (G)-coated Fe3O4 nanoparticles. Meanwhile, electrochemical tests, including galvanostatic cycling with potential limitation, cyclic voltammetry, and alternating current impedance were used to investigate the influence of Fe3O4 content on the lithium-ion storage performance of 3DG@Fe3O4 composites. The 3DG@Fe3O4-2 electrode with about 83.2% Fe3O4 exhibited enhanced specific capacity and better cycle stability. It also delivered a high discharge specific capacity of 1412.33 mAh/g at a current density of 0.1 A/g and 577 mAh/g after 100 cycles, and this value was 6.5 times that of pure Fe3O4 electrode material after 100 cycles. The composites prepared by this method have simple synthesis and do not require additional reducing agent. The prepared composites have high capacity and good cycle stability compared with pure Fe3O4 nanoparticles, and this can promote the application of Fe3O4-based anode materials in the field of energy storage.

Key words: hydrothermal process, carbon coating, Fe3O4, lithium-ion battery, anode material

中图分类号: