1 |
MOSALLANEJAD B, MALEK S S, ERSHADI M, et al. Cycling degradation and safety issues in sodium-ion batteries: Promises of electrolyte additives[J]. Journal of Electroanalytical Chemistry, 2021, 895: doi: 10.1016/j.jelechem.2021.115505.
|
2 |
YANG M, ZHANG W, SU D, et al. Flexible SnTe/carbon nanofiber membrane as a free-standing anode for high-performance lithium-ion and sodium-ion batteries[J]. Journal of Colloid and Interface Science, 2022, 605: 231-240.
|
3 |
XUE H, FANG Y X, ZENG L X, et al. Facile synthesis of hierarchical lychee-like Zn3V3O8@C/rGO nanospheres as high-performance anodes for lithium ion batteries[J]. Journal of Colloid and Interface Science, 2019, 533: 627-635.
|
4 |
LI J, HWANG S, GUO F M, et al. Phase evolution of conversion-type electrode for lithium ion batteries[J]. Nature Communications, 2019, 10(1): 1-10.
|
5 |
PHAM-CONG D, KIM S J, JEONG S Y, et al. Enhanced cycle stability of iron(II, III) oxide nanoparticles encapsulated with nitrogen-doped carbon and graphene frameworks for lithium battery anodes[J]. Carbon, 2018, 129: 621-630.
|
6 |
WEI W, YANG S B, ZHOU H X, et al. 3D graphene foams cross-linked with pre-encapsulated Fe3O4 nanospheres for enhanced lithium storage[J]. Advanced Materials (Deerfield Beach, Fla), 2013, 25(21): 2909-2914.
|
7 |
YU S H, LEE S H, LEE D J, et al. Conversion reaction-based oxide nanomaterials for lithium ion battery anodes[J]. Small (Weinheim an Der Bergstrasse, Germany), 2016, 12(16): 2146-2172.
|
8 |
JUNG S K, HWANG I, CHANG D, et al. Nanoscale phenomena in lithium-ion batteries[J]. Chemical Reviews, 2020, 120(14): 6684-6737.
|
9 |
ERSHADI M, JAVANBAKHT M, BRANDELL D, et al. Facile synthesis of amino-functionalized mesoporous Fe3O4/rGO 3D nanocomposite by diamine compounds as Li-ion battery anodes[J]. Applied Surface Science, 2022, 601: doi: 10.1016/j.apsusc.2022.154120.
|
10 |
ZHANG L, WU HAO BIN, LOU X W D. Iron-oxide-based advanced anode materials for lithium-ion batteries[J]. Advanced Energy Materials, 2014, 4(4): doi: 10.1002/aenm.201300958.
|
11 |
WU Q C, JIANG R L, LIU H W. Carbon layer encapsulated Fe3O4@Reduced graphene oxide lithium battery anodes with long cycle performance[J]. Ceramics International, 2020, 46(8): 12732-12739.
|
12 |
LIU G, SHAO J, GAO Y J, et al. Green fabrication of sandwich-like and dodecahedral C@Fe3O4@C as high-performance anode for lithium-ion batteries[J]. Journal of Solid State Electrochemistry, 2017, 21(9): 2593-2600.
|
13 |
CONG H P, REN X C, WANG P, et al. Macroscopic multifunctional graphene-based hydrogels and aerogels by a metal ion induced self-assembly process[J]. ACS Nano, 2012, 6(3): 2693-2703.
|
14 |
赵婷婷, 李小强, 张亚梅, 等. CoFe2O4@C复合纳米纤维膜作为自支撑锂离子电池负极[J]. 复合材料学报, 2022, 39(9): 4431-4440.
|
|
ZHAO T T, LI X Q, ZHANG Y M, et al. CoFe2O4@C composite nanofiber films as self-standing anodes for lithium-ion batteries[J]. Acta Materiae Compositae Sinica, 2022, 39(9): 4431-4440.
|
15 |
JIANG X, MA Y W, LI J J, et al. Self-assembly of reduced graphene oxide into three-dimensional architecture by divalent ion linkage[J]. The Journal of Physical Chemistry C, 2010, 114(51): 22462-22465.
|
16 |
ZHANG M, JIA M Q. High rate capability and long cycle stability Fe3O4-graphene nanocomposite as anode material for lithium ion batteries[J]. Journal of Alloys and Compounds, 2013, 551: 53-60.
|
17 |
吴启超. Fe3O4@rGO/C锂离子电池负极材料制备与性能研究[D]. 徐州: 中国矿业大学, 2020.
|
|
WU Q C. Study on the preparation and performance of Fe3O4@rGO/C anode materials for lithium ion batteries[D]. Xuzhou: China University of Mining and Technology, 2020.
|
18 |
夏东, 黄朋, 李恒. 水热法制备三维导电石墨烯气凝胶及其焦耳热性能研究[J]. 化工学报, 2021, 72(7): 3839-3848.
|
|
XIA D, HUANG P, LI H. Joule-heating studies of electrically conducting three-dimensional graphene aerogels prepared by hydrothermal assembly[J]. CIESC Journal, 2021, 72(7): 3839-3848.
|
19 |
李晨, 熊传溪. Fe3O4/纳米纤维素气凝胶负极材料的制备及电化学性能[J]. 储能科学与技术, 2018, 7(3): 512-518.
|
|
LI C, XIONG C X. The preparation of Fe3O4/nanocellulose aerogel nanocomposite as anodes for lithium-ion batteries and electrochemical performance[J]. Energy Storage Science and Technology, 2018, 7(3): 512-518.
|
20 |
WANG N, LIU Q L, LI Y, et al. Self-crosslink assisted synthesis of 3D porous branch-like Fe3O4/C hybrids for high-performance lithium/sodium-ion batteries[J]. RSC Advances, 2017, 7(79): 50307-50316.
|
21 |
ZHANG Y G, LI Y, LI H P, et al. Electrochemical performance of carbon-encapsulated Fe3O4 nanoparticles in lithium-ion batteries: Morphology and particle size effects[J]. Electrochimica Acta, 2016, 216: 475-483.
|
22 |
AURBACH D, LEVI M D, LEVI E, et al. Common electroanalytical behavior of Li intercalation processes into graphite and transition metal oxides[J]. Journal of the Electrochemical Society, 1998, 145(9): 3024-3034.
|
23 |
SHI Y, ZHANG J, BRUCK A M, et al. Conductive polymers: A tunable 3D nanostructured conductive gel framework electrode for high-performance lithium ion batteries[J]. Advanced Materials, 2017, 29(22): doi: 10.1002/adma.201603922.
|
24 |
杨志伟. 铁基氧化物/石墨烯纳米复合材料的制备及其储锂性能研究[D]. 天津: 天津大学, 2017.
|
|
YANG Z W. Synthesis and lithium-storage performance of Fe-based oxides/graphene nanocomposites[D]. Tianjin: Tianjin University, 2017.
|