| 1 | 
																						 
											 VAN EGMOND W J, SAAKES M, NOOR I, et al. Performance of an environmentally benign acid base flow battery at high energy density[J]. International Journal of Energy Research, 2018, 42(4): 1524-1535.
											 											 | 
										
																													
																						| 2 | 
																						 
											 RESCH M, BÜHLER J, SCHACHLER B, et al. Technical and economic comparison of grid supportive vanadium redox flow batteries for primary control reserve and community electricity storage in Germany[J]. International Journal of Energy Research, 2019, 43(1): 337-357.
											 											 | 
										
																													
																						| 3 | 
																						 
											 THALLER L. Electrically rechargeable REDOX flow cell: SN-606891[P]. 1976-12-07.
											 											 | 
										
																													
																						| 4 | 
																						 
											 HAWTHORNE K L, WAINRIGHT J S, SAVINELL R F. Studies of iron-ligand complexes for an all-iron flow battery application[J]. Journal of the Electrochemical Society, 2014, 161(10): A1662-A1671.
											 											 | 
										
																													
																						| 5 | 
																						 
											 JOHNSON D A, REID M A. Chemical and electrochemical behavior of the Cr(lll)/Cr(ll) half cell in the iron-chromium redox energy storage system[J]. J. Electrochem. Soc., 1985: doi: 10.1149/1.2114015.
											 											 | 
										
																													
																						| 6 | 
																						 
											 ZENG Y K, ZHOU X L, AN L, et al. A high-performance flow-field structured iron-chromium redox flow battery[J]. Journal of Power Sources, 2016, 324: 738-744.
											 											 | 
										
																													
																						| 7 | 
																						 
											 AHN Y, MOON J, PARK S E, et al. High-performance bifunctional electrocatalyst for iron-chromium redox flow batteries[J]. Chemical Engineering Journal, 2021, 421: doi: 10.1016/j.cej.2020.127855.
											 											 | 
										
																													
																						| 8 | 
																						 
											 WEI L, ZHAO T S, XU Q, et al. In-situ investigation of hydrogen evolution behavior in vanadium redox flow batteries[J]. Applied Energy, 2017, 190: 1112-1118.
											 											 | 
										
																													
																						| 9 | 
																						 
											 JAYATHILAKE B S, PLICHTA E J, HENDRICKSON M A, et al. Improvements to the coulombic efficiency of the iron electrode for an all-iron redox-flow battery[J]. Journal of the Electrochemical Society, 2018, 165(9): A1630-A1638.
											 											 | 
										
																													
																						| 10 | 
																						 
											 ZENG Y K, ZHOU X L, ZENG L, et al. Performance enhancement of iron-chromium redox flow batteries by employing interdigitated flow fields[J]. Journal of Power Sources, 2016, 327: 258-264.
											 											 | 
										
																													
																						| 11 | 
																						 
											 GABE D R. The role of hydrogen in metal electrodeposition processes[J]. Journal of Applied Electrochemistry, 1997, 27(8): 908-915.
											 											 | 
										
																													
																						| 12 | 
																						 
											 GAHN R F, HAGEDORN N H, JOHNSON J A. Cycling performace of the iron chromium redox energy storage system: intersociety energy conversion engineering conference, Miami Beach, FL, USA, 18 Aug 1985 [C]. United States, 1985.
											 											 | 
										
																													
																						| 13 | 
																						 
											 YANG Z F, WEI Y G, ZENG Y K, et al. Effects of in situ bismuth catalyst electrodeposition on performance of vanadium redox flow batteries[J]. Journal of Power Sources, 2021, 506: doi: 10.1016/j.jpowsour.2021.230238.
											 											 | 
										
																													
																						| 14 | 
																						 
											 ZENG Y K, ZHAO T S, ZHOU X L, et al. The effects of design parameters on the charge-discharge performance of iron-chromium redox flow batteries[J]. Applied Energy, 2016, 182: 204-209.
											 											 | 
										
																													
																						| 15 | 
																						 
											 GAHN R F, HAGEDORN N H, LING J S. Single cell performance studies on the Fe/Cr redox energy storage system using mixed reactant solutions at elevated temperature: NASA-TM-83385[P]. 1983-01-01.
											 											 |