1 |
WANG M Q, LIU X L, QIN B Y, et al. In-situ etching and ion exchange induced 2D-2D MXene@Co9S8/CoMo2S4 heterostructure for superior Na+ storage[J]. Chemical Engineering Journal, 2023, 451: doi: 10.1016/j.cej.2022.138508.
|
2 |
CHEN W, CHEN J L, DENG J Y, et al. Improvement of cycling stability of Li1.2Mn0.54Co0.13Ni0.13O2 microrods cathode material modified with in situ polymerization of aniline in HTFSI solution[J]. International Journal of Energy Research, 2022, 46(15): 22960-22970.
|
3 |
周伟东, 黄秋, 谢晓新, 等. 固态锂电池聚合物电解质研究进展[J]. 储能科学与技术, 2022, 11(6): 1788-1805.
|
|
ZHOU W D, HUANG Q, XIE X X, et al. Research progress of polymer electrolyte for solid state lithium batteries[J]. Energy Storage Science and Technology, 2022, 11(6): 1788-1805.
|
4 |
WU Y X, LI Y, WANG Y, et al. Advances and prospects of PVDF based polymer electrolytes[J]. Journal of Energy Chemistry, 2022, 64: 62-84.
|
5 |
CHENG X B, ZHANG R, ZHAO C Z, et al. A review of solid electrolyte interphases on lithium metal anode[J]. Advanced Science (Weinheim, Baden-Wurttemberg, Germany), 2015, 3(3): doi: 10.1002/advs.201500213.
|
6 |
DU Z Z, AI W, YANG J, et al. In situ fabrication of Ni2P nanoparticles embedded in nitrogen and phosphorus codoped carbon nanofibers as a superior anode for Li-ion batteries[J]. ACS Sustainable Chemistry & Engineering, 2018, 6(11): 14795-14801.
|
7 |
汤匀, 岳芳, 郭楷模, 等. 全固态锂电池技术发展趋势与创新能力分析[J]. 储能科学与技术, 2022, 11(1): 359-369.
|
|
TANG Y, YUE F, GUO K M, et al. Analysis of the development trend and the innovation ability of an all-solid-state lithium battery technology[J]. Energy Storage Science and Technology, 2022, 11(1): 359-369.
|
8 |
GUAN P Y, ZHOU L, YU Z L, et al. Recent progress of surface coating on cathode materials for high-performance lithium-ion batteries[J]. Journal of Energy Chemistry, 2020, 43: 220-235.
|
9 |
JI X Q, XIA Q, XU Y X, et al. A review on progress of lithium-rich Manganese-based cathodes for lithium ion batteries[J]. Journal of Power Sources, 2021, 487: doi:10.1016/j.jpowsour.2020.229362.
|
10 |
MANTHIRAM A. A reflection on lithium-ion battery cathode chemistry[J]. Nature Communications, 2020, 11(1): 1-9.
|
11 |
BORAH S, GUHA A K, SAIKIA L, et al. Nanofiber induced enhancement of electrical and electrochemical properties in polymer gel electrolytes for application in energy storage devices[J]. Journal of Alloys and Compounds, 2021, 886: doi:10.1016/j.jallcom.2021.161173
|
12 |
许卓, 郑莉莉, 陈兵, 等. 固态电池复合电解质研究综述[J]. 储能科学与技术, 2021, 10(6): 2117-2126.
|
|
XU Z, ZHENG L L, CHEN B, et al. Overview of research on composite electrolytes for solid-state batteries[J]. Energy Storage Science and Technology, 2021, 10(6): 2117-2126.
|
13 |
ZHANG H, OTEO U, ZHU H J, et al. Enhanced lithium-ion conductivity of polymer electrolytes by selective introduction of hydrogen into the anion[J]. Angewandte Chemie (International Ed in English), 2019, 58(23): 7829-7834.
|
14 |
ZHAO Q, STALIN S, ZHAO C Z, et al. Designing solid-state electrolytes for safe, energy-dense batteries[J]. Nature Reviews Materials, 2020, 5(3): 229-252.
|
15 |
ZHANG Z, YINGHUANG, ZHANG G Z, et al. Three-dimensional fiber network reinforced polymer electrolyte for dendrite-free all-solid-state lithium metal batteries[J]. Energy Storage Materials, 2021, 41: 631-641.
|
16 |
刘当玲, 王诗敏, 高智慧, 等. 三维NZSPO/PAN-[PEO-NaTFST]复合钠离子电池固体电解质[J]. 储能科学与技术, 2021, 10(3): 931-937.
|
|
LIU D L, WANG S M, GAO Z H, et al. Properties of three-dimensional NZSPO/PAN-[PEO-NATFST]sodium-battery-composite solid electrolyte[J]. Energy Storage Science and Technology, 2021, 10(3): 931-937.
|
17 |
XU L, WEI K Y, CAO Y, et al. The synergistic effect of the PEO-PVA-PESf composite polymer electrolyte for all-solid-state lithium-ion batteries[J]. RSC Advances, 2020, 10(9): 5462-5467.
|
18 |
CHEN H, ZHOU C J, DONG X R, et al. Revealing the superiority of fast ion conductor in composite electrolyte for dendrite-free lithium-metal batteries[J]. ACS Applied Materials & Interfaces, 2021, 13(19): 22978-22986.
|
19 |
FAN L Z, NAN C W, ZHAO S J. Effect of modified SiO2 on the properties of PEO-based polymer electrolytes[J]. Solid State Ionics, 2003, 164(1/2): 81-86.
|
20 |
ROSENWINKEL M P, ANDERSSON R, MINDEMARK J, et al. Coordination effects in polymer electrolytes: Fast Li+ transport by weak ion binding[J]. The Journal of Physical Chemistry C, 2020, 124(43): 23588-23596.
|
21 |
SHENG O W, JIN C B, LUO J M, et al. Mg2B2O5 nanowire enabled multifunctional solid-state electrolytes with high ionic conductivity, excellent mechanical properties, and flame-retardant performance[J]. Nano Letters, 2018, 18(5): 3104-3112.
|
22 |
张林森, 王士奇, 王利霞, 等. PEO基Li+-g-C3N4复合固态电解质的制备及其电化学性能[J]. 储能科学与技术, 2022, 11(11): 3463-3469.
|
|
ZHANG L S, WANG S Q, WANG L X, et al. Synthesis and performances of Li+ modified g-C3N4 for PEO-based composite solid electrolyte[J]. Energy Storage Science and Technology, 2022, 11(11): 3463-3469.
|
23 |
LI X L, YANG L, SHAO D S, et al. Preparation and application of poly (ethylene oxide)-based all solid-state electrolyte with a walnut-like SiO2 as nano-fillers[J]. Journal of Applied Polymer Science, 2020, 137(24): 48810.
|
24 |
LIANG F Q, WEN Z Y. MOF/poly(ethylene oxide) composite polymer electrolyte for solid-state lithium battery[J]. Journal of Inorganic Materials, 2021, 36(3): 332.
|
25 |
QI Z Y, PEI Y C, GOH T W, et al. Conversion of confined metal@ZIF-8 structures to intermetallic nanoparticles supported on nitrogen-doped carbon for electrocatalysis[J]. Nano Research, 2018, 11(6): 3469-3479.
|
26 |
YANG X B, WEN Z D, WU Z L, et al. Synthesis of ZnO/ZIF-8 hybrid photocatalysts derived from ZIF-8 with enhanced photocatalytic activity[J]. Inorganic Chemistry Frontiers, 2018, 5(3): 687-693.
|
27 |
TRAN U P N, LE K K A, PHAN N T S. Expanding applications of metal-organic frameworks: Zeolite imidazolate framework ZIF-8 as an efficient heterogeneous catalyst for the Knoevenagel reaction[J]. ACS Catalysis, 2011, 1(2): 120-127.
|
28 |
CHIZALLET C, LAZARE S, BAZER-BACHI D, et al. Catalysis of transesterification by a nonfunctionalized metal-organic framework: Acido-basicity at the external surface of ZIF-8 probed by FTIR and ab initio calculations[J]. Journal of the American Chemical Society, 2010, 132(35): 12365-12377.
|
29 |
XI J Y, QIU X P, CUI M Z, et al. Enhanced electrochemical properties of PEO-based composite polymer electrolyte with shape-selective molecular sieves[J]. Journal of Power Sources, 2006, 156(2): 581-588.
|
30 |
SUN C, ZHANG J H, YUAN X F, et al. ZIF-8-based quasi-solid-state electrolyte for lithium batteries[J]. ACS Applied Materials & Interfaces, 2019, 11(50): 46671-46677.
|
31 |
KASNERYK V, POSCHMANN M P M, SERDECHNOVA M, et al. Formation and structure of ZIF-8@PEO coating on the surface of zinc[J]. Surface and Coatings Technology, 2022, 445: doi:10.1016/j.surfcoat.2022.128733.
|
32 |
JAYATHILAKA P A R D, DISSANAYAKE M A K L, ALBINSSON I, et al. Effect of nano-porous Al2O3 on thermal, dielectric and transport properties of the (PEO)9 LiTFSI polymer electrolyte system[J]. Electrochimica Acta, 2002, 47(20): 3257-3268.
|