储能科学与技术 ›› 2023, Vol. 12 ›› Issue (5): 1315-1331.doi: 10.19799/j.cnki.2095-4239.2023.0255

• 喜迎东北大学建校百年-储能电池关键材料与循环技术专刊 • 上一篇    下一篇

室温钠硫电池的发展现状和挑战

李社栋1(), 宋莹莹2, 边煜华1, 刘朝孟1, 高宣雯1(), 骆文彬1   

  1. 1.东北大学冶金学院
    2.东北大学医学与生物信息工程学院 ;辽宁 沈阳 110000
  • 收稿日期:2023-04-21 修回日期:2023-04-25 出版日期:2023-05-05 发布日期:2023-05-29
  • 通讯作者: 高宣雯 E-mail:2201617@stu.neu.edu.cn;gaoxuanwen@mail.neu.edu.cn
  • 作者简介:李社栋(1998—),男,硕士研究生,研究方向为室温钠硫电池正极材料,E-mail:2201617@stu.neu.edu.cn
  • 基金资助:
    国家自然科学青年基金(52204308);中国博士后基金面上项目(ZX20220158);“兴辽英才”青年拔尖(XLYC2007155);中央高校基本科研业务费(N2025018);东北大学博士后基金(01270012810287)

Status and challenges in the development of room-temperature sodium-sulfur batteries

Shedong LI1(), Yingying SONG2, Yuhua BIAN1, Zhaomeng LIU1, Xuanwen GAO1(), Wenbin LUO1   

  1. 1.School of Metallurgy
    2.School of Medicine and BioInformation Engineering; Northeastern University, Shenyang 110000, Liaoning, China
  • Received:2023-04-21 Revised:2023-04-25 Online:2023-05-05 Published:2023-05-29
  • Contact: Xuanwen GAO E-mail:2201617@stu.neu.edu.cn;gaoxuanwen@mail.neu.edu.cn

摘要:

室温钠硫(RT Na-S)电池的正负极材料为硫(S)和钠(Na)元素,S和Na元素具有成本低、资源丰富、能量密度高等一系列优点,因此室温钠硫电池被认为是一种极具潜力的可充电电池。但是在发展过程中面临着库仑效率低和循环稳定性差等一系列的问题,这些问题严重阻碍了室温钠硫电池的进一步发展和实际应用。有很多因素导致了这些问题,如S阴极的结构、隔膜和电解液等方面,其中最主要的原因是多硫化物的穿梭效应和多步反应缓慢的动力学。因此,基于近几年对RT Na-S电池已有的研究成果,本文从S在电解液中的氧化还原机理出发,总结了RT Na-S电池在S阴极的纳米结构设计、隔膜设计和电解液设计三个角度的发展现状,在此基础上列举了RT Na-S电池现发展阶段所面临的挑战。结果发现:(1) 目前绝大部分提高多硫化物(NaPSs)转化率的策略均以抑制穿梭效应,促进缓慢的动力学为主;(2) RT Na-S电池现阶段面临的挑战主要是S正极本质存在问题、电解液、巨大的体积变化以及多硫化物中间体引起的穿梭效应等。本文期望为RT Na-S电池的进一步发展和商业化提供新的思路。

关键词: 室温钠硫电池, 氧化还原机理, 纳米结构, 隔膜设计, 电解液设计

Abstract:

Room-temperature sodium-sulfur batteries (RT NA-S) consist of sulfur (S) and sodium (Na) as positive and negative electrode materials, respectively. Using S and Na elements as battery components is advantageous due to their low cost, abundance, and high energy density. Consequently, RT Na-S batteries have the potential as rechargeable batteries operating at room temperature. However, several problems, such as low coulomb efficiency and poor cycle stability, hinder the practical application and further development of RT Na-S batteries. In addition, the electrochemical performance of the Na-S battery is affected by various factors, including the structure of the S cathode, diaphragm, and electrolyte. Additionally, researchers must address the crucial issues of the shuttle effect of polysulfides and the slow kinetics of the multi-step reaction. This study summarizes recent research on RT Na-S batteries. It provides an overview of their current development status from the perspectives of nanostructure design, diaphragm design, and electrolyte design in the S cathode. The study begins by discussing the redox mechanism of S in the electrolyte. Furthermore, the study lists challenges of RT Na-S batteries during their current development stage. The results show that most strategies for improving the sodium polysulfide (NaPSs) conversion rate focus on inhibiting the shuttle effect and promoting slow kinetics. The main challenges facing RT Na-S batteries at present are related to the nature of the S-positive electrode, the electrolyte, the considerable volume change, and the shuttle effect caused by polysulfide intermediates. This study aims to provide new routes for the further development and commercialization of RT Na-S batteries.

Key words: room temperature sodium-sulfur battery, redox mechanism, nanostructures, diaphragm design, electrolyte design

中图分类号: