1 |
PEI Z Z, LI Z G, ZHENG X L. Porous materials for lithium-ion batteries[J]. Journal of Nanoscience and Nanotechnology, 2016, 16(9): 9028-9049.
|
2 |
NAYAK P K, YANG L T, BREHM W, et al. From lithium-ion to sodium-ion batteries: Advantages, challenges, and surprises[J]. Angewandte Chemie International Edition, 2018, 57(1): 102-120.
|
3 |
KULOVA T L, SKUNDIN A M. From lithium-ion to sodium-ion battery[J]. Russian Chemical Bulletin, 2017, 66(8): 1329-1335.
|
4 |
ZONG L S, YAN L, ZHANG Z J, et al. Bundled carbon nanofiber arrays grown on Cu-Ni tube textile boosting superior sodium-ion storage kinetics[J]. Journal of Alloys and Compounds, 2023, 938: 168448.
|
5 |
ZHANG Z J, SUN K, CHEN Y F, et al. High conductivity Cu3Ge and high-capacity GeO2 synergistically enhance a continuous channel Ge-based anode for lithium-ion batteries with long-life and scalable preparation[J]. Energy & Fuels, 2022, 36(21): 13390-13397.
|
6 |
JIANG Y Z, HU M J, ZHANG D, et al. Transition metal oxides for high performance sodium ion battery anodes[J]. Nano Energy, 2014, 5: 60-66.
|
7 |
YU H J, GUO S H, ZHU Y B, et al. Novel titanium-based O3- type NaTi0.5Ni0.5O2 as a cathode material for sodium ion batteries[J]. Chemical Communications, 2014, 50(4): 457-459.
|
8 |
ZHAO Q L, WHITTAKER A, ZHAO X. Polymer electrode materials for sodium-ion batteries[J]. Materials, 2018, 11(12): 2567.
|
9 |
YAN L, ZONG L S, ZHANG Z J, et al. Oxygen vacancies activated porous MnO/graphene submicron needle arrays for high-capacity lithium-ion batteries[J]. Carbon, 2022, 190: 402-411.
|
10 |
LI C Q, ZHANG Z J, CHEN Y F, et al. Architecting braided porous carbon fibers based on high-density catalytic crystal planes to achieve highly reversible sodium-ion storage[J]. Advanced Science, 2022, 9(18): 2104780.
|
11 |
成雪莉, 张维福, 罗城, 等. 一步水热法制备三维石墨烯/Fe3O4复合材料及其储锂性能研究[J]. 储能科学与技术, 2023, 12 (4): 1066-1074.
|
|
CHENG X L, ZHANG W F, LUO C C, et al. The preparation of three-dimensional graphene/Fe3O4 composites by one-step hydrothermal method and their Lithium storage performance[J]. Energy Storage Science and Technology, 2023, 12 (4): 1066-1074.
|
12 |
MARAWAT F, ALI G, SADAQAT A, et al. Cobalt doped ovoid magnetite (Fe3O4) nanocomposites incrusted on sheets of reduced graphene oxide as anode for sodium-ion batteries[J]. Journal of Alloys and Compounds, 2022, 929: 167318.
|
13 |
任增英. 多孔镍膜-CNTs复合电极的制备与性能研究[D]. 天津: 天津工业大学.
|
|
REN Z Y. Preparation and properties of porous nickel film-CNTs composite electrode[D]. Tianjin: Tianjin Polytechnic University.
|
14 |
张志佳, 李传齐. 自支撑碳纳米纤维的宏量制备及其储钠性能[J]. 天津工业大学学报, 2022, 41(6): 23-28
|
|
ZHANG Z J, LI C Q. Mass-preparation and sodium storage performance of self-supporting carbon nanofibers[J]. Journal of Tianjin Polytechnic University, 2022, 41(6): 23-28.
|
15 |
BAJWA N, LI X S, AJAYAN P M, et al. Mechanisms for catalytic CVD growth of multiwalled carbon nanotubes[J]. Journal of Nanoscience and Nanotechnology, 2008, 8(11): 6054-6064.
|
16 |
LIN R P, XU Y S, XIAO M J, et al. In-situ pyrolysis preparation of Fe3O4@CNTs/CC as binder-free anode for sodium-ion batteries[J]. Materials Chemistry and Physics, 2023, 297: 127403.
|
17 |
REN G Z, CHEN C J, DENG L H, et al. Microstructural heterogeneity on the cylindrical surface of carbon fibers analyzed by Raman spectroscopy[J]. New Carbon Materials, 2015, 30(5): 476-480.
|
18 |
龚晓晔, 尤静林, 王建, 等. 几种铁(氧)化合物的高温原位拉曼光谱研究[C]//第二十届全国光散射学术会议, 2019, 苏州.
|
|
GONG X Y, YOU J L, WANG J, et al. High-temperature in situ Raman spectroscopy of several iron (oxygen) compounds[C]//CNCLS 20, Suzhou, China, 2019.
|
19 |
LIU X X, TAN Y C, LIU T C, et al. A simple electrode-level chemical presodiation route by solution spraying to improve the energy density of sodium-ion batteries[J]. Advanced Functional Materials, 2019, 29(50): 1903795.
|
20 |
LI L, WANG Q M, ZHANG X Y, et al. Unique three-dimensional Co3O4@N-CNFs derived from ZIFs and bacterial cellulose as advanced anode for sodium-ion batteries[J]. Applied Surface Science, 2020, 508: 145295.
|
21 |
WANG X J, LIU X J, WANG G, et al. One-dimensional hybrid nanocomposite of high-density monodispersed Fe3O4 nanoparticles and carbon nanotubes for high-capacity storage of lithium and sodium[J]. Journal of Materials Chemistry A, 2016, 4(47): 18532-18542.
|
22 |
FAN H H, QIN B W, WANG Z W, et al. Pseudocapacitive sodium storage of Fe1- xS@N-doped carbon for low-temperature operation[J]. Science China Materials, 2020, 63(4): 505-515.
|
23 |
姜亚龙. 赝电容储钠纳米材料的设计制备与电化学机理[D]. 武汉: 武汉理工大学.
|
|
JIANG Y L. Design, preparation and electrochemical mechanism of pseudo-capacitance sodium storage nano-materials[D]. Wuhan: Wuhan University of Technology.
|
24 |
ZHU J, DENG D. Single-crystalline α-Fe2O3 void@frame microframes for rechargeable batteries[J]. Journal of Materials Chemistry A, 2016, 4(12): 4425-4432.
|
25 |
YU S J, LU Z J, XIE J, et al. Carbon-coated Fe3O4 nanoparticles in situ grown on 3D cross-linked carbon nanosheets as anodic materials for high capacity lithium and sodium-ion batteries[J]. New Journal of Chemistry, 2022, 46(21): 10229-10236.
|
26 |
XU Z L, YAO S S, CUI J, et al. Atomic scale, amorphous FeOx/carbon nanofiber anodes for Li-ion and Na-ion batteries[J]. Energy Storage Materials, 2017, 8: 10-19.
|
27 |
YU M, SUN L Y, NING X H. Controllable synthesis of carbon-coated Fe3O4 nanorings with high Li/Na storage performance[J]. Journal of Alloys and Compounds, 2021, 878: 160359.
|
28 |
CHEN M W, NIU D C, MAO J Y, et al. A movable Fe2O3 core in connected hierarchical pores for ultrafast intercalation/deintercalation in sodium-ion batteries[J]. ACS Applied Energy Materials, 2021, 4(6): 5888-5896.
|
29 |
LI D, ZHOU J S, CHEN X H, et al. Amorphous Fe2O3/graphene composite nanosheets with enhanced electrochemical performance for sodium-ion battery[J]. ACS Applied Materials & Interfaces, 2016, 8(45): 30899-30907.
|
30 |
ZHAO Y J, WANG F X, WANG C, et al. Encapsulating highly crystallized mesoporous Fe3O4 in hollow N-doped carbon nanospheres for high-capacity long-life sodium-ion batteries[J]. Nano Energy, 2019, 56: 426-433.
|
31 |
ZHOU Y P, SUN W P, RUI X H, et al. Biochemistry-derived porous carbon-encapsulated metal oxide nanocrystals for enhanced sodium storage[J]. Nano Energy, 2016, 21: 71-79.
|
32 |
ZHANG N, HAN X P, LIU Y C, et al. 3D porous γ-Fe2O3@C nanocomposite as high-performance anode material of Na-ion batteries[J]. Advanced Energy Materials, 2015, 5(5): 1401123.
|
33 |
XIA G L, GAO Q L, SUN D L, et al. Porous carbon nanofibers encapsulated with peapod-like hematite nanoparticles for high-rate and long-life battery anodes[J]. Small, 2017, 13(44): 1701561.
|
34 |
CHOI W, SHIN H C, KIM J M, et al. Modeling and applications of electrochemical impedance spectroscopy (EIS) for lithium-ion batteries[J]. Journal of Electrochemical Science and Technology, 2020, 11(1): 1-13.
|