储能科学与技术 ›› 2023, Vol. 12 ›› Issue (6): 1765-1773.doi: 10.19799/j.cnki.2095-4239.2022.0741

• 储能材料与器件 • 上一篇    下一篇

数据中心用壳管式相变储能换热器的储能特性

彭子安1(), 段文超1, 李杰1(), 孙小琴1(), 宋孟杰2   

  1. 1.长沙理工大学能源与动力工程学院,湖南 长沙 410114
    2.北京理工大学机械与车辆学院,北京 100081
  • 收稿日期:2022-12-12 修回日期:2023-02-14 出版日期:2023-06-05 发布日期:2023-06-21
  • 通讯作者: 李杰,孙小琴 E-mail:294434172@qq.com;lijie@csust.edu.cn;xiaoqinsun@csust.edu.cn
  • 作者简介:彭子安(1998—),男,硕士研究生,研究方向为相变储能技术,E-mail:294434172@qq.com
  • 基金资助:
    国家自然科学基金(52078053);国家重点研发计划(2018YFE0111200)

Energy storage characteristics of a shell-and-tube phase change energy storage heat exchanger for data centers

Zian PENG1(), Wenchao DUAN1, Jie LI1(), Xiaoqin SUN1(), Mengjie SONG2   

  1. 1.School of Energy and Power Engineering, Changsha University of Science & Technology, Changsha 410114, Hunan, China
    2.School of Mechanical Engineering, Beijng Institute of Technology, Beijing 100081, China
  • Received:2022-12-12 Revised:2023-02-14 Online:2023-06-05 Published:2023-06-21
  • Contact: Jie LI, Xiaoqin SUN E-mail:294434172@qq.com;lijie@csust.edu.cn;xiaoqinsun@csust.edu.cn

摘要:

针对相变储能换热器储/放能率低的问题,本工作设计了一种壳管式相变储能换热器,以相变温度为25 ℃的石蜡为储能材料,以水为传热流体,研究传热流体对换热器储能性能的影响。搭建了壳管式相变储能换热器的实验平台,并利用FLUENT软件对其进行三维瞬态建模,通过改变边界工况进行储能数值模拟,并对最优工况进行分析。研究结果表明:数值模拟不同传热流体温度和流速对蓄/放热过程的影响,传热流体温度与相变温度的差值越大,相变单元蓄/放热速率越快,平均储/放能率越大;温差增大5 ℃,平均储能率最大提高91%,平均放能率最大提高124%,但温差增大造成的不可逆?损失也越大;而在凝固过程中,由于相变材料内部自然对流的作用非常小,放热速率远低于蓄热速率,温差同为5 ℃时平均放能率仅为平均储能率的64%,温度差是主要影响因素。随着传热流体流速的增加,流体侧对流换热的加强会加快换热,加快熔化,但对壳管式换热器的平均储能率和?损失影响不大。综合考虑平均储/放能率和?损失,本研究中换热器性能最佳的蓄热工况为40 ℃,放热工况为10 ℃,流速工况为0.5 m/s,研究结果可为储能换热器在数据中心的应用提供一定参考。

关键词: 相变储能, 壳管式换热器, 数值模拟, 储能率, ?损失

Abstract:

Addressing the issue of low energy storage/discharge rates in phase-change energy storage heat exchangers, this paper presents a shell-and-tube type phase-change energy storage heat exchanger using paraffin as the energy storage material and water as the heat transfer fluid (HTF). The aim is to investigate the influence of HTF on the heat exchanger's energy storage performance. An experimental platform for the shell-and-tube type phase-change energy storage heat exchanger is constructed, and a three-dimensional transient model is developed using FLUENT software. By changing the boundary conditions, a numerical simulation of energy storage is performed to examine the effect of different HTF temperatures and flow rates on the energy charge/discharge process. The results of the study show that the larger the temperature difference between the HTF and the paraffin, the faster the heat charge/discharge rate. When the temperature difference increases by 5 ℃, the maximum increase of the average energy storage rate is 91%, and the maximum increase of the average energy discharge rate is 124% but with the penalty of irreversible exergy loss. Due to the very small natural convection within the phase change material, the heat discharge rate is much lower than the heat charge rate in the solidification process. With a temperature difference of 5 ℃, the average energy discharge is 64% of the average energy storage rate. The temperature difference is the main factor influencing the heat transfer performance. As the HTF flow rate increases, the strengthening of the convective heat transfer accelerates the heat transfer and melt rate. However, the impact on the average energy storage rate of the shell-and-tube heat exchanger and the exergy loss is insignificant. With balancing the average energy storage/discharge rate and exergy loss, this study's optimal heat exchanger performance was achieved with an HTF temperature of 40 ℃ for heat charge, an HTF temperature of 10 ℃ for heat discharge, and a flow rate condition of 0.5 m/s. This study provides valuable insights into applying energy storage heat exchangers in data centers.

Key words: phase change energy storage, shell-and-tube heat exchanger, numerical simulation, energy storage efficiency, exergy loss

中图分类号: