储能科学与技术 ›› 2023, Vol. 12 ›› Issue (9): 2811-2822.doi: 10.19799/j.cnki.2095-4239.2023.0271
闫旭鹏1(), 卢启辰1, 任志博1(), 王金意1, 王晓龙1, 刘丽萍1, 王伟1, 郭伟琦1, 刘鹏1, 李方家1,2
收稿日期:
2023-04-25
修回日期:
2023-05-25
出版日期:
2023-09-05
发布日期:
2023-09-16
通讯作者:
任志博
E-mail:xp_yan@qny.chng.com.cn;zb_ren@qny.chng.com.cn
作者简介:
闫旭鹏(1992—),男,博士,工程师,研究方向为新型高效电解水制氢技术与装备,E-mail:xp_yan@qny.chng.com.cn;
基金资助:
Xupeng YAN1(), Qichen LU1, Zhibo REN1(), Jinyi WANG1, Xiaolong Wang1, Liping LIU1, Wei WANG1, Weiqi GUO1, Peng LIU1, Fangjia LI1,2
Received:
2023-04-25
Revised:
2023-05-25
Online:
2023-09-05
Published:
2023-09-16
Contact:
Zhibo REN
E-mail:xp_yan@qny.chng.com.cn;zb_ren@qny.chng.com.cn
摘要:
在全球碳中和的战略背景下,全球主要经济体陆续提出氢能发展规划与目标,将氢能的发展上升至战略高度。通过可再生能源电解水制取绿色、低碳氢气获得了前所未有的全球共识。新一代阴离子交换膜水电解(AEMWE)制氢技术是基于阴离子交换膜(AEM)开发的新一代制氢技术,兼具低成本的材料体系和灵活的动态响应特性,有望在未来实现大规模应用。AEMWE制氢技术近年来受到了国内外广泛的关注,并临近商业化应用。本文围绕AEMWE制氢技术的关键材料——阴离子交换膜开展论述,介绍了代表性商业化膜材料的结构特点和理化特性,讨论了以AEM为核心的膜电极组件(MEA)制备工艺研究进展。本文重点分析讨论了多种商业化AEM在水电解制氢过程中的性能表现,分析了水电解制氢过程中膜电极性能的影响因素,并结合长时间运行稳定性评估了多种商业化AEM的应用潜力。最后从产业化推广的角度,文章总结了关键AEM材料在电解水制氢领域应用所面临的技术难题,提出了可能的发展方向,期望为AEMWE制氢技术的发展提供借鉴和参考。
中图分类号:
闫旭鹏, 卢启辰, 任志博, 王金意, 王晓龙, 刘丽萍, 王伟, 郭伟琦, 刘鹏, 李方家. 水电解制氢用商业化阴离子交换膜发展现状[J]. 储能科学与技术, 2023, 12(9): 2811-2822.
Xupeng YAN, Qichen LU, Zhibo REN, Jinyi WANG, Xiaolong Wang, Liping LIU, Wei WANG, Weiqi GUO, Peng LIU, Fangjia LI. Progress in developing commercial anion exchange membranes for hydrogen production by water electrolysis[J]. Energy Storage Science and Technology, 2023, 12(9): 2811-2822.
表1
代表性商业化阴离子交换膜物性对比表"
公司 | 产品 | 厚度/μm | 离子交换 容量/meq/g (毫当量每克) | 离子传导率/ (ms/cm) | 面电阻/ (Ω·cm2) | 拉伸 应力/MPa | 断裂 伸长率/% | 吸水率 (25 ℃)/% (质量百分数) |
---|---|---|---|---|---|---|---|---|
FuMa-Tech | Fumasep FAA3-50 | 45~55[ | 1.6-2.0 | 40 | 0.6~1.5 (Cl) | 25~40 | 15~60 | 10~25 |
Fumasep FAA3-PE-30 | 26~34 | 1.4-1.6 | — | <1.3 (Cl) | >50 | >50 | <20 | |
Fumasep FAA3-PK-75 | 70~80 | 1.2~1.4 | — | 1.2~2.0 (Cl) | 30~60 | 10~30 | 10~20 | |
Dioxide Materials | Sustainion X37-50 | 50 | 1.1 | 80 | 0.045 | 干燥时极易碎 | 干燥时极易碎 | 80[ |
Versogen | PiperION-20 | 20 | ~2.35 | ~150 | — | 30 | >50 | <75[ |
PiperION-80 | 80 | ~2.35 | ~150 | — | 50 | >100 | — | |
Ionomer (Aemion™) | AF1-HNN5-25 | 30.5±0.5[ | 1.4-1.7 | 15~25 | 0.21-0.33 | 60 | 85~110 | 31[ |
AF1-HNN5-50 | 57.5±2.0[ | 1.4-1.7 | 15~25 | 0.42-0.67 | 60 | 85~110 | 21[ | |
AF1-HNN8-25 | 29.5±0.5[ | 2.1-2.5 | >80 | 0.13 | 60 | 85~110 | 52[ | |
AF1-HNN8-50 | 59.3±0.5[ | 2.1-2.5 | >80 | 0.063 | 60 | 85~110 | 48[ | |
Orion | TM1 | 30 | 2.19 | 60 (54[ | — | 30 | 35 | 14(Cl-)/44(OH-) |
Tokuyama | A201 | 28 (35[ | 1.8 | 42 | — | 96.4±8.9 | 61.7±11.8 | 10 (50 ℃) 14 (80 ℃)[ |
1 | IEA. Global Energy Review: CO2 Emissions in 2021, IEA[R]. Paris: IEA, 2022. |
2 | 宁翔. 我国工业制氢技术路线研究及展望[J]. 能源研究与利用, 2020(1): 52-55. |
NING X. Research and prospect of China's industrial hydrogen production technology route[J]. Energy Research & Utilization, 2020(1): 52-55. | |
3 | 俞红梅, 邵志刚, 侯明, 等. 电解水制氢技术研究进展与发展建议[J]. 中国工程科学, 2021, 23(2): 146-152. |
YU H M, SHAO Z G, HOU M, et al. Hydrogen production by water electrolysis: Progress and suggestions[J]. Strategic Study of CAE, 2021, 23(2): 146-152. | |
4 | HERMESMANN M, MÜLLER T E. Green, turquoise, blue, or grey? environmentally friendly hydrogen production in transforming energy systems[J]. Progress in Energy and Combustion Science, 2022, 90: 100996. |
5 | LI C Q, BAEK J B. The promise of hydrogen production from alkaline anion exchange membrane electrolyzers[J]. Nano Energy, 2021, 87: 106162. |
6 | KRESSMAN T R E. Ion exchange resin membranes and resin-impregnated filter paper[J]. Nature, 1950, 165(4197): 568. |
7 | MERLE G, WESSLING M, NIJMEIJER K. Anion exchange membranes for alkaline fuel cells: A review[J]. Journal of Membrane Science, 2011, 377(1/2): 1-35. |
8 | GANCI F, LOMBARDO S, SUNSERI C, et al. Nanostructured electrodes for hydrogen production in alkaline electrolyzer[J]. Renewable Energy, 2018, 123: 117-124. |
9 | SANTORO C, LAVACCHI A, MUSTARELLI P, et al. What is next in anion-exchange membrane water electrolyzers? bottlenecks, benefits, and future[J]. ChemSusChem, 2022, 15(8): e202200027. |
10 | HUANG J Q, YU Z X, TANG J L, et al. A review on anion exchange membranes for fuel cells: Anion-exchange polyelectrolytes and synthesis strategies[J]. International Journal of Hydrogen Energy, 2022, 47(65): 27800-27820. |
11 | SCHULZE M, GÜLZOW E. Fuel cells-alkaline fuel cells | overview performance and operational conditions[M]//Encyclopedia of Electrochemical Power Sources. Amsterdam: Elsevier, 2009: 353-361. |
12 | RAZMJOOEI F, MORAWIETZ T, TAGHIZADEH E, et al. Increasing the performance of an anion-exchange membrane electrolyzer operating in pure water with a nickel-based microporous layer[J]. Joule, 2021, 5(7): 1776-1799. |
13 | HENKENSMEIER D, NAJIBAH M, HARMS C, et al. Overview: State-of-the art commercial membranes for anion exchange membrane water electrolysis[J]. Journal of Electrochemical Energy Conversion and Storage, 2021, 18(2): 024001. |
14 | SALVATORE D A, GABARDO C M, REYES A, et al. Designing anion exchange membranes for CO2 electrolysers[J]. Nature Energy, 2021, 6(4): 339-348. |
15 | WANG J H, ZHAO Y, SETZLER B P, et al. Poly(aryl piperidinium) membranes and ionomers for hydroxide exchange membrane fuel cells[J]. Nature Energy, 2019, 4(5): 392-398. |
16 | GANGRADE A S, CASSEGRAIN S, CHANDRA GHOSH P, et al. Permselectivity of ionene-based, Aemion® anion exchange membranes[J]. Journal of Membrane Science, 2022, 641: 119917. |
17 | PARK E J, CAPUANO C B, AYERS K E, et al. Chemically durable polymer electrolytes for solid-state alkaline water electrolysis[J]. Journal of Power Sources, 2018, 375: 367-372. |
18 | MARINKAS A, STRUŹYŃSKA-PIRON I, LEE Y, et al. Anion-conductive membranes based on 2-mesityl-benzimidazolium functionalised poly(2, 6-dimethyl-1, 4-phenylene oxide) and their use in alkaline water electrolysis[J]. Polymer, 2018, 145: 242-251. |
19 | DUAN Q J, GE S H, WANG C Y. Water uptake, ionic conductivity and swelling properties of anion-exchange membrane[J]. Journal of Power Sources, 2013, 243: 773-778. |
20 | CHAE J E, LEE S Y, YOO S J, et al. Polystyrene-based hydroxide-ion-conducting ionomer: Binder characteristics and performance in anion-exchange membrane fuel cells[J]. Polymers, 2021, 13(5): 690. |
21 | VINCENT I, KRUGER A, BESSARABOV D. Development of efficient membrane electrode assembly for low cost hydrogen production by anion exchange membrane electrolysis[J]. International Journal of Hydrogen Energy, 2017, 42(16): 10752-10761. |
22 | CARBONE A, ZIGNANI S C, GATTO I, et al. Assessment of the FAA3-50 polymer electrolyte in combination with a NiMn2O4 anode catalyst for anion exchange membrane water electrolysis[J]. International Journal of Hydrogen Energy, 2020, 45(16): 9285-9292. |
23 | KUTZ R B, CHEN Q M, YANG H Z, et al. Sustainion imidazolium-functionalized polymers for carbon dioxide electrolysis[J]. Energy Technology, 2017, 5(6): 929-936. |
24 | MOTEALLEH B, LIU Z C, MASEL R I, et al. Next-generation anion exchange membrane water electrolyzers operating for commercially relevant lifetimes[J]. International Journal of Hydrogen Energy, 2021, 46(5): 3379-3386. |
25 | LIU Z C, SAJJAD S D, GAO Y, et al. The effect of membrane on an alkaline water electrolyzer[J]. International Journal of Hydrogen Energy, 2017, 42(50): 29661-29665. |
26 | HUGAR K M, KOSTALIK H A Ⅳ, COATES G W. Imidazolium cations with exceptional alkaline stability: A systematic study of structure-stability relationships[J]. Journal of the American Chemical Society, 2015, 137(27): 8730-8737. |
27 | LINDQUIST G A, OENER S Z, KRIVINA R, et al. Performance and durability of pure-water-fed anion exchange membrane electrolyzers using baseline materials and operation[J]. ACS Applied Materials & Interfaces, 2021, 13(44): 51917-51924. |
28 | WRIGHT A G, HOLDCROFT S. Hydroxide-stable ionenes[J]. ACS Macro Letters, 2014, 3(5): 444-447. |
29 | WRIGHT A G, FAN J T, BRITTON B, et al. Hexamethyl-p-terphenyl poly(benzimidazolium): A universal hydroxide-conducting polymer for energy conversion devices[J]. Energy & Environmental Science, 2016, 9(6): 2130-2142. |
30 | THOMAS O D, SOO K J W Y, PECKHAM T J, et al. Anion conducting poly(dialkyl benzimidazolium) salts[J]. Polymer Chemistry, 2011, 2(8): 1641-1643. |
31 | THOMAS O D, SOO K J W Y, PECKHAM T J, et al. A stable hydroxide-conducting polymer[J]. Journal of the American Chemical Society, 2012, 134(26): 10753-10756. |
32 | HENKENSMEIER D, CHO H R, KIM H J, et al. Polybenzimidazolium hydroxides-Structure, stability and degradation[J]. Polymer Degradation and Stability, 2012, 97(3): 264-272. |
33 | LEE W H, PARK E J, HAN J, et al. Poly(terphenylene) anion exchange membranes: The effect of backbone structure on morphology and membrane property[J]. ACS Macro Letters, 2017, 6(5): 566-570. |
34 | KANG S Y, PARK J E, JANG G Y, et al. High-performance and durable water electrolysis using a highly conductive and stable anion-exchange membrane[J]. International Journal of Hydrogen Energy, 2022, 47(15): 9115-9126. |
35 | JANNASCH P, WEIBER E A. Configuring anion-exchange membranes for high conductivity and alkaline stability by using cationic polymers with tailored side chains[J]. Macromolecular Chemistry and Physics, 2016, 217(10): 1108-1118. |
36 | MEEK K M, ANTUNES C M, STRASSER D, et al. High-throughput anion exchange membrane characterization at NREL[J]. ECS Transactions, 2019, 92(8): 723-731. |
37 | Ionomr. Datasheet[EB/OL]. [2022-11-01]. https://ionomr.com/. |
38 | YANG Y X, LI P, ZHENG X B, et al. Anion-exchange membrane water electrolyzers and fuel cells[J]. Chemical Society Reviews, 2022, 51(23): 9620-9693. |
39 | PUSHKAREVA I V, PUSHKAREV A S, GRIGORIEV S A, et al. Comparative study of anion exchange membranes for low-cost water electrolysis[J]. International Journal of Hydrogen Energy, 2020, 45(49): 26070-26079. |
40 | HNÁT J, PLEVOVA M, TUFA R A, et al. Development and testing of a novel catalyst-coated membrane with platinum-free catalysts for alkaline water electrolysis[J]. International Journal of Hydrogen Energy, 2019, 44(33): 17493-17504. |
41 | PARK J E, KANG S Y, OH S H, et al. High-performance anion-exchange membrane water electrolysis[J]. Electrochimica Acta, 2019, 295: 99-106. |
42 | GUO D D, YU H M, CHI J, et al. Cu2S@NiFe layered double hydroxides nanosheets hollow nanorod arrays self-supported oxygen evolution reaction electrode for efficient anion exchange membrane water electrolyzer[J]. International Journal of Hydrogen Energy, 2023, 48(47): 17743-17757. |
43 | KHALID H, NAJIBAH M, PARK H S, et al. Properties of anion exchange membranes with a focus on water electrolysis[J]. Membranes, 2022, 12(10): 989. |
44 | FORTIN P, KHOZA T, CAO X Z, et al. High-performance alkaline water electrolysis using Aemion™ anion exchange membranes[J]. Journal of Power Sources, 2020, 451: 227814. |
45 | MOTZ A R, LI D G, KEANE A, et al. Performance and durability of anion exchange membrane water electrolyzers using down-selected polymer electrolytes[J]. Journal of Materials Chemistry A, 2021, 9(39): 22670-22683. |
46 | PARK S H, LEE S H, JEONG J Y, et al. Three-dimensional copper cobalt hydroxide electrode for anion exchange membrane water electrolyzer[J]. International Journal of Hydrogen Energy, 2023 |
47 | PARK Y S, JEONG J, NOH Y, et al. Commercial anion exchange membrane water electrolyzer stack through non-precious metal electrocatalysts[J]. Applied Catalysis B: Environmental, 2021, 292: 120170. |
48 | JANG M J, YANG S H, PARK M G, et al. Efficient and durable anion exchange membrane water electrolysis for a commercially available electrolyzer stack using alkaline electrolyte[J]. ACS Energy Letters, 2022, 7(8): 2576-2583. |
49 | CHEN N J, PAEK S Y, LEE J Y, et al. High-performance anion exchange membrane water electrolyzers with a current density of 7.68 A·cm-2 and a durability of 1000 hours[J]. Energy & Environmental Science, 2021, 14(12): 6338-6348. |
50 | GATTO I, CAPRÌ A, LO VECCHIO C, et al. Optimal operating conditions evaluation of an anion-exchange-membrane electrolyzer based on FUMASEP® FAA3-50 membrane[J]. International Journal of Hydrogen Energy, 2023, 48(32): 11914-11921. |
51 | CAMPAGNA ZIGNANI S, FARO M L, CARBONE A, et al. Performance and stability of a critical raw materials-free anion exchange membrane electrolysis cell[J]. Electrochimica Acta, 2022, 413: 140078. |
52 | LUO X Y, ROJAS-CARBONELL S, YAN Y S, et al. Structure-transport relationships of poly(aryl piperidinium) anion-exchange membranes: Eeffect of anions and hydration[J]. Journal of Membrane Science, 2020, 598: 117680. |
53 | ENDRŐDI B, KECSENOVITY E, SAMU A, et al. High carbonate ion conductance of a robust PiperION membrane allows industrial current density and conversion in a zero-gap carbon dioxide electrolyzer cell[J]. Energy & Environmental Science, 2020, 13(11): 4098-4105. |
54 | BAI H J, PENG H Q, XIANG Y, et al. Poly(arylene piperidine)s with phosphoric acid doping as high temperature polymer electrolyte membrane for durable, high-performance fuel cells[J]. Journal of Power Sources, 2019, 443: 227219. |
55 | YIN Z L, PENG H Q, WEI X, et al. An alkaline polymer electrolyte CO2 electrolyzer operated with pure water[J]. Energy & Environmental Science, 2019, 12(8): 2455-2462. |
56 | CHEN N J, LU C R, LI Y X, et al. Tunable multi-cations-crosslinked poly(arylene piperidinium)-based alkaline membranes with high ion conductivity and durability[J]. Journal of Membrane Science, 2019, 588: 117120. |
57 | LONG C, WANG Z H, ZHU H. High chemical stability anion exchange membrane based on poly(aryl piperidinium): Effect of monomer configuration on membrane properties[J]. International Journal of Hydrogen Energy, 2021, 46(35): 18524-18533. |
58 | MA W L, LIU Q, LI J M, et al. Poly (aryl piperidinium) membranes with dipolar alkyl nitrile sidechains for fuel cells[J]. International Journal of Hydrogen Energy, 2023, 48(40): 15258-15268. |
59 | SONG W J, PENG K, XU W, et al. Upscaled production of an ultramicroporous anion-exchange membrane enables long-term operation in electrochemical energy devices[J]. Nature Communications, 2023, 14: 2732. |
60 | ENAPTER. Enapter Datasheet[EB/OL]. [2022-11-01]. https://www.enapter.com/aem-electrolyser. |
[1] | 岑官骏, 乔荣涵, 申晓宇, 朱璟, 郝峻丰, 孙蔷馥, 张新新, 田孟羽, 金周, 詹元杰, 武怿达, 闫勇, 贲留斌, 俞海龙, 刘燕燕, 黄学杰. 锂电池百篇论文点评(2023.6.1—2023.7.31)[J]. 储能科学与技术, 2023, 12(9): 3003-3018. |
[2] | 李聪, 王桃, 任延杰, 周立波, 陈荐, 陈维. 熔融碳酸盐燃料电池阴极溶解与防护[J]. 储能科学与技术, 2023, 12(8): 2444-2456. |
[3] | 赵争光, 陈振营, 翟光群, 张希, 庄小东. Sc/O掺杂硫化物固态电解质的制备及全固态电池性能[J]. 储能科学与技术, 2023, 12(8): 2412-2423. |
[4] | 刘欢, 彭娜, 高清雯, 李文鹏, 杨志荣, 王景涛. 冠醚掺杂的聚合物固态电解质对全固态锂电池性能的影响[J]. 储能科学与技术, 2023, 12(8): 2401-2411. |
[5] | 夏恒恒, 梁鹏程, 安仲勋. 硫系电解液添加剂对镍钴锰酸锂//石墨锂离子电池性能的影响[J]. 储能科学与技术, 2023, 12(8): 2390-2400. |
[6] | 刘志浩, 杜童, 李瑞瑞, 邓涛. 宽温域、高电压、安全无EC电解液研究进展[J]. 储能科学与技术, 2023, 12(8): 2504-2525. |
[7] | 徐冲, 徐宁, 蒋志敏, 李中凯, 胡洋, 严红, 马国强. 锂离子电池产气机制及基于电解液的抑制策略[J]. 储能科学与技术, 2023, 12(7): 2119-2133. |
[8] | 张佳怡, 翁素婷, 王兆翔, 王雪锋. 石墨负极界面SEI膜与锂离子电池热失控[J]. 储能科学与技术, 2023, 12(7): 2105-2118. |
[9] | 张贵萍, 闫筱炎, 王兵, 姚培新, 胡昌杰, 刘奕哲, 李纾黎, 薛建军. 长寿命循环的磷酸铁锂电池及材料、工艺[J]. 储能科学与技术, 2023, 12(7): 2134-2140. |
[10] | 杲齐新, 赵景腾, 李国兴. 锂离子电池快速充电研究进展[J]. 储能科学与技术, 2023, 12(7): 2166-2184. |
[11] | 乔荣涵, 朱璟, 申晓宇, 岑官骏, 郝峻丰, 季洪祥, 田孟羽, 金周, 詹元杰, 武怿达, 闫勇, 贲留斌, 俞海龙, 刘燕燕, 黄学杰. 锂电池百篇论文点评(2023.4.1—2023.5.31)[J]. 储能科学与技术, 2023, 12(7): 2333-2348. |
[12] | 郝增辉, 刘训良, 孟缘, 孟楠, 温治. 电极界面微观结构对固态锂离子电池性能的影响[J]. 储能科学与技术, 2023, 12(7): 2095-2104. |
[13] | 黄凌锋, 韩东梅, 黄盛, 王拴紧, 肖敏, 孟跃中. 含有机硼的锂离子电池聚合物电解质的研究进展[J]. 储能科学与技术, 2023, 12(6): 1815-1830. |
[14] | 禹永帅, 刘永峰, 裴普成, 张璐, 姚圣卓. 阴极相对湿度对PEMFC电解质水含量及性能的影响[J]. 储能科学与技术, 2023, 12(6): 1755-1764. |
[15] | 胡川, 胡志伟, 李振东, 李帅, 王豪, 王丽平. 调控LiPF6 基电解液溶剂化结构稳定富锂锰基正极界面[J]. 储能科学与技术, 2023, 12(5): 1604-1615. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||