储能科学与技术 ›› 2023, Vol. 12 ›› Issue (9): 2799-2810.doi: 10.19799/j.cnki.2095-4239.2023.0331
收稿日期:
2023-05-08
修回日期:
2023-05-31
出版日期:
2023-09-05
发布日期:
2023-09-16
通讯作者:
胡方
E-mail:zhanshiying@greelto.com;hufang25@sut.edu.cn
作者简介:
詹世英(1981—),男,博士,研究方向为新型储能材料,E-mail:zhanshiying@greelto.com;
基金资助:
Shiying ZHAN1,2(), Huanhuan LI2, Fang HU2()
Received:
2023-05-08
Revised:
2023-05-31
Online:
2023-09-05
Published:
2023-09-16
Contact:
Fang HU
E-mail:zhanshiying@greelto.com;hufang25@sut.edu.cn
摘要:
随着智能电子产品和电动汽车的普及,人们对高效率储能装置的需求日益迫切。锌离子电容器(ZICs)结合超级电容器和锌离子电池的储能机制,可以在兼顾功率密度的同时提供理想的能量密度,成为当前最具有发展前景的电化学储能装置之一。与锂离子电池相比,ZICs具有低成本、高安全性和高理论容量等优势。但是它的发展尚且处于初期阶段,低电容量和容量衰减等问题严重阻碍其工业化进程,因此对于电极材料的开发和储能机制的探究仍旧是当前研究的热点。正极材料作为该装置的核心部件之一,其组织形貌和性能对器件综合电化学性能有着至关重要的作用。本文阐述了多孔碳材料、结构碳材料、过渡金属氧化物和MXenes作为正极材料当前的研究进展,介绍了材料的制备方法和结构设计,着重分析储能机制和电化学行为,以及对性能衰减的原因进行了讨论。最后,对正极材料当前所面临的挑战及未来的发展进行了展望。
中图分类号:
詹世英, 李欢欢, 胡方. 水系锌离子电容器正极材料的研究进展[J]. 储能科学与技术, 2023, 12(9): 2799-2810.
Shiying ZHAN, Huanhuan LI, Fang HU. The research process of cathode materials for aqueous zinc-ioncapacitors[J]. Energy Storage Science and Technology, 2023, 12(9): 2799-2810.
1 | XU J J, ZHANG J X, POLLARD T P, et al. Electrolyte design for Li-ion batteries under extreme operating conditions[J]. Nature, 2023, 614(7949): 694-700. |
2 | YAO Y X, CHEN X, YAO N, et al. Unlocking charge transfer limitations for extreme fast charging of Li-ion batteries[J]. Angewandte Chemie International Edition, 2023, 62(4): e202214828. |
3 | CHEN Z Q, DANILOV D L, EICHEL R A, et al. Porous electrode modeling and its applications to Li-ion batteries[J]. Advanced Energy Materials, 2022, 12(32): 2201506. |
4 | QIN N, JIN L M, LU Y Y, et al. Over-potential tailored thin and dense lithium carbonate growth in solid electrolyte interphase for advanced lithium ion batteries[J]. Advanced Energy Materials, 2022, 12(15): 2103402. |
5 | 裴英伟, 张红, 王星辉. 可充电锌离子电池电解质的研究进展[J]. 储能科学与技术, 2022, 11(7): 2075-2082. |
PEI Y W, ZHANG H, WANG X H. Recent advances in the electrolytes of rechargeable zinc-ion batteries[J]. Energy Storage Science and Technology, 2022, 11(7): 2075-2082. | |
6 | ZHAI S L, JIANG Z S, CHEN X C, et al. Flexible one-dimensional Zn-based electrochemical energy storage devices: Recent progress and future perspectives[J]. Journal of Materials Chemistry A, 2021, 9(47): 26573-26602. |
7 | 王心怡, 李维杰, 韩朝, 等. 水系锌离子电池金属负极的挑战与优化策略[J]. 储能科学与技术, 2022, 11(4): 1211-1225. |
WANG X Y, LI W J, HAN C, et al. Challenges and optimization strategies of the anode of aqueous zinc-ion battery[J]. Energy Storage Science and Technology, 2022, 11(4): 1211-1225. | |
8 | 婷婷, 林其杭, 刘长洋, 等. 水系锌离子电池二氧化锰正极改性研究进展[J]. 储能科学与技术, 2023, 12(3): 754-767. |
TING T, LIN Q H, LIU C Y, et al. Research progress in modification of manganese dioxide as cathode materials for aqueous zinc-ion batteries[J]. Energy Storage Science and Technology, 2023, 12(3): 754-767. | |
9 | 衡永丽, 谷振一, 郭晋芝, 等. Na3V2(PO4)3@C用作水系锌离子电池正极材料的研究[J]. 储能科学与技术, 2021, 10(3): 938-944. |
HENG Y L, GU Z Y, GUO J Z, et al. Study on Na3V2(PO4)3@C as cathode material for water-based zinc ion batteries[J]. Energy Storage Science and Technology, 2021, 10(3): 938-944. | |
10 | WANG Z Q, CHEN H M, LIU X D, et al. Amorphous K-buserite microspheres for high-performance aqueous Zn-ion batteries and hybrid supercapacitors[J]. Advanced Science, 2023, 10(13): 2207329. |
11 | WANG W J, LIU D X, JIANG Y Q, et al. Mechanism enhancement of V3O7/V6O13 heterostructures to achieve high-performance aqueous Zn-Ion batteries[J]. Chemical Engineering Journal, 2023, 463: 142309. |
12 | ZHU K Y, JIANG W K, WANG Z S, et al. Hewettite ZnV6O16⋅8H2O with remarkably stable layers and ultralarge interlayer spacing for high-performance aqueous Zn-ion batteries[J]. Angewandte Chemie International Edition, 2023, 62(1): doi: 10.1002/anie. 202213368. |
13 | ZHANG Y M, JIANG S Y, LI Y L, et al. In situ grown hierarchical electrospun nanofiber skeletons with embedded vanadium nitride nanograins for ultra-fast and super-long cycle life aqueous Zn-ion batteries[J]. Advanced Energy Materials, 2023, 13(5): 2202826. |
14 | DONG L B, MA X P, LI Y, et al. Extremely safe, high-rate and ultralong-life zinc-ion hybrid supercapacitors[J]. Energy Storage Materials, 2018, 13: 96-102. |
15 | MA X P, CHENG J Y, DONG L B, et al. Multivalent ion storage towards high-performance aqueous zinc-ion hybrid supercapacitors[J]. Energy Storage Materials, 2019, 20: 335-342. |
16 | WANG L, PENG M K, CHEN J R, et al. High energy and power zinc ion capacitors: A dual-ion adsorption and reversible chemical adsorption coupling mechanism[J]. ACS Nano, 2022, 16(2): 2877-2888. |
17 | SINGH G, MARIA RUBAN A, GENG X, et al. Recognizing the potential of K-salts, apart from KOH, for generating porous carbons using chemical activation[J]. Chemical Engineering Journal, 2023, 451: 139045. |
18 | MANSUER M, MIAO L, QIN Y, et al. Trapping precursor-level functionalities in hierarchically porous carbons prepared by a pre-stabilization route for superior supercapacitors[J]. Chinese Chemical Letters, 2023, 34(3): 107304. |
19 | LONG Y Y, AN X Y, ZHANG H, et al. Highly graphitized lignin-derived porous carbon with hierarchical N/O co-doping "core-shell" superstructure supported by metal-organic frameworks for advanced supercapacitor performance[J]. Chemical Engineering Journal, 2023, 451: 138877. |
20 | SHAO H, WU Y C, LIN Z F, et al. Nanoporous carbon for electrochemical capacitive energy storage[J]. Chemical Society Reviews, 2020, 49(10): 3005-3039. |
21 | WU J P, LIU R R, LI M, et al. Boosting effects of hydroxyl groups on porous carbon for improved aqueous zinc-ion capacitors[J]. Journal of Energy Storage, 2022, 48: 103996. |
22 | ZHU X Q, GUO F J, YANG Q, et al. Boosting zinc-ion storage capability by engineering hierarchically porous nitrogen-doped carbon nanocage framework[J]. Journal of Power Sources, 2021, 506: 230224. |
23 | SHANG K Z, LIU Y J, CAI P W, et al. N, P, and S co-doped 3D porous carbon-architectured cathode for high-performance Zn-ion hybrid capacitors[J]. Journal of Materials Chemistry A, 2022, 10(12): 6489-6498. |
24 | CAO Y F, TANG X H, LIU M N, et al. Thin-walled porous carbon tile-packed paper for high-rate Zn-ion capacitor cathode[J]. Chemical Engineering Journal, 2022, 431: 133241. |
25 | LI Y, YANG W, YANG W, et al. Towards high-energy and anti-self-discharge Zn-ion hybrid supercapacitors with new understanding of the electrochemistry[J]. Nano-Micro Letters, 2021, 13(1): 95. |
26 | BILAL M, ULLAH RASHID E, ZDARTA J, et al. Graphene-based nanoarchitectures as ideal supporting materials to develop multifunctional nanobiocatalytic systems for strengthening the biotechnology industry[J]. Chemical Engineering Journal, 2023, 452: 139509. |
27 | LIU T, YANG Y, CAO S W, et al. Pore perforation of graphene coupled with in situ growth of Co3Se4 for high-performance Na-ion battery[J]. Advanced Materials, 2023, 35(13): 2207752. |
28 | LUO J R, XU L, LIU H M, et al. Harmonizing graphene laminate spacing and zinc-ion solvated structure toward efficient compact capacitive charge storage[J]. Advanced Functional Materials, 2022, 32(20): 2112151. |
29 | LI X, LI Y, ZHAO X, et al. Elucidating the charge storage mechanism of high-performance vertical graphene cathodes for zinc-ion hybrid supercapacitors[J]. Energy Storage Materials, 2022, 53: 505-513. |
30 | XU H, HE W J, LI Z W, et al. Revisiting charge storage mechanism of reduced graphene oxide in zinc ion hybrid capacitor beyond the contribution of oxygen-containing groups[J]. Advanced Functional Materials, 2022, 32(16): 2111131. |
31 | WEI S, WAN C C, LI X G, et al. Constructing N-doped and 3D Hierarchical Porous graphene nanofoam by plasma activation for supercapacitor and Zn ion capacitor[J]. iScience, 2023, 26(2): 105964. |
32 | ZHOU Y J, LUO J R, SHAO Y Y, et al. Progress on carbonene-based materials for Zn-ion hybrid supercapacitors[J]. New Carbon Materials, 2022, 37(5): 918-935. |
33 | WANG H Y, YE W Q, YANG Y, et al. Zn-ion hybrid supercapacitors: Achievements, challenges and future perspectives[J]. Nano Energy, 2021, 85: 105942. |
34 | LI X, LI Y, XIE S Y, et al. Zinc-based energy storage with functionalized carbon nanotube/polyaniline nanocomposite cathodes[J]. Chemical Engineering Journal, 2022, 427: 131799. |
35 | LI R X, SHEN X P, JI Z Y, et al. Ultralight coaxial fiber-shaped zinc-ion hybrid supercapacitor with high specific capacitance and energy density for wearable electronics[J]. Chemical Engineering Journal, 2023, 457: 141266. |
36 | ZHAO J X, CONG Z F, HU J, et al. Regulating zinc electroplating chemistry to achieve high energy coaxial fiber Zn ion supercapacitor for self-powered textile-based monitoring system[J]. Nano Energy, 2022, 93: 106893. |
37 | ZHANG X S, PEI Z X, WANG C J, et al. Flexible zinc-ion hybrid fiber capacitors with ultrahigh energy density and long cycling life for wearable electronics[J]. Small, 2019, 15(47): 1903817. |
38 | JAVED M S, ASIM S, NAJAM T, et al. Recent progress in flexible Zn-ion hybrid supercapacitors: Fundamentals, fabrication designs, and applications[J]. Carbon Energy, 2023, 5(1): e271. |
39 | WANG C, ZENG X, CULLEN P J, et al. The rise of flexible zinc-ion hybrid capacitors: Advances, challenges, and outlooks[J]. Journal of Materials Chemistry A, 2021, 9(35): 19054-19082. |
40 | DONG L B, YANG W, YANG W, et al. High-power and ultralong-life aqueous zinc-ion hybrid capacitors based on pseudocapacitive charge storage[J]. Nano-Micro Letters, 2019, 11(1): 94. |
41 | MA X P, WANG J J, WANG X L, et al. Aqueous V2O5/activated carbon zinc-ion hybrid capacitors with high energy density and excellent cycling stability[J]. Journal of Materials Science: Materials in Electronics, 2019, 30(6): 5478-5486. |
42 | BLANC L E, KUNDU D P, NAZAR L F. Scientific challenges for the implementation of Zn-ion batteries[J]. Joule, 2020, 4(4): 771-799. |
43 | WU B K, ZHANG G B, YAN M Y, et al. Graphene scroll-coated α-MnO2 nanowires as high-performance cathode materials for aqueous Zn-ion battery[J]. Small, 2018, 14(13): 1703850. |
44 | REN H, ZHANG L, ZHANG J Y, et al. Na+ pre-intercalated Na0.11MnO2 on three-dimensional graphene as cathode for aqueous zinc ion hybrid supercapacitor with high energy density[J]. Carbon, 2022, 198: 46-56. |
45 | LI Q Q, LIU M J, HUANG F Z, et al. Co9S8@MnO2 core-shell defective heterostructure for High-Voltage flexible supercapacitor and Zn-ion hybrid supercapacitor[J]. Chemical Engineering Journal, 2022, 437: 135494. |
46 | ZHANG M H, XU W, WU L S, et al. Recent progress in MXene-based nanomaterials for highperformance aqueous zinc-ion hybrid capacitors[J]. New Carbon Materials, 2022, 37(3): 508-526. |
47 | SANG X H, XIE Y, LIN M W, et al. Atomic defects in monolayer titanium carbide (Ti3C2Tx) MXene[J]. ACS Nano, 2016, 10(10): 9193-9200. |
48 | PU S, WANG Z X, XIE Y T, et al. Origin and regulation of self-discharge in MXene supercapacitors[J]. Advanced Functional Materials, 2023, 33(8): 2208715. |
49 | CHENG T, YANG X L, YANG S, et al. Flexible transparent bifunctional capacitive sensors with superior areal capacitance and sensing capability based on PEDOT: PSS/MXene/Ag grid hybrid electrodes[J]. Advanced Functional Materials, 2023, 33(5): 2210997. |
50 | ZHANG J, ZHANG X Y, YUE W B. Boosting electrocatalytic oxygen reduction performance of CoNC catalysts on Ti3C2 MXene by the synergistic effect with oxygen vacancy-rich TiO2[J]. Chemical Engineering Journal, 2023, 456: 141101. |
51 | SIWAL S S, KAUR H, CHAUHAN G, et al. MXene-based nanomaterials for biomedical applications: Healthier substitute materials for the future[J]. Advanced NanoBiomed Research, 2023, 3(1): 2200123. |
52 | LV Y H, ZHANG L L, WEI X, et al. The emerging of zinc-ion hybrid supercapacitors: Advances, challenges, and future perspectives[J]. Sustainable Materials and Technologies, 2023, 35: e00536. |
53 | CHEN J Z, CHEN H, CHEN M F, et al. Nacre-inspired surface-engineered MXene/nanocellulose composite film for high-performance supercapacitors and zinc-ion capacitors[J]. Chemical Engineering Journal, 2022, 428: 131380. |
54 | LIU W J, LI L, HU C Q, et al. Intercalation of small organic molecules into Ti3C2Tx MXene cathodes for flexible high-volume-capacitance Zn-ion microsupercapacitor[J]. Advanced Materials Technologies, 2022, 7(12): 2200158. |
55 | LI X L, LI M A, YANG Q, et al. Vertically aligned Sn4+ preintercalated Ti2CTx MXene sphere with enhanced Zn ion transportation and superior cycle lifespan[J]. Advanced Energy Materials, 2020, 10(35): 2001394. |
[1] | 岑官骏, 乔荣涵, 申晓宇, 朱璟, 郝峻丰, 孙蔷馥, 张新新, 田孟羽, 金周, 詹元杰, 武怿达, 闫勇, 贲留斌, 俞海龙, 刘燕燕, 黄学杰. 锂电池百篇论文点评(2023.6.1—2023.7.31)[J]. 储能科学与技术, 2023, 12(9): 3003-3018. |
[2] | 张梓楠, 陈剑. Nb掺杂Na3V2O2 (PO4 ) 2F空心微球钠离子电池正极材料的制备与性能[J]. 储能科学与技术, 2023, 12(8): 2370-2381. |
[3] | 张吉禄, 董育辰, 宋强, 袁思鸣, 郭孝东. 多晶及单晶高镍三元材料LiNi0.9Co0.05Mn0.05O2 的可控制备及其电化学储锂特性[J]. 储能科学与技术, 2023, 12(8): 2382-2389. |
[4] | 乔荣涵, 朱璟, 申晓宇, 岑官骏, 郝峻丰, 季洪祥, 田孟羽, 金周, 詹元杰, 武怿达, 闫勇, 贲留斌, 俞海龙, 刘燕燕, 黄学杰. 锂电池百篇论文点评(2023.4.1—2023.5.31)[J]. 储能科学与技术, 2023, 12(7): 2333-2348. |
[5] | 李尚倬, 龙禹彤, 刘朝孟, 高宣雯, 骆文彬. 钾离子电池聚阴离子正极材料的研究进展[J]. 储能科学与技术, 2023, 12(5): 1348-1363. |
[6] | 朱璟, 申晓宇, 岑官骏, 乔荣涵, 郝峻丰, 季洪祥, 田孟羽, 金周, 詹元杰, 武怿达, 闫勇, 贲留斌, 俞海龙, 刘燕燕, 黄学杰. 锂电池百篇论文点评(2023.2.1—2023.3.31)[J]. 储能科学与技术, 2023, 12(5): 1553-1569. |
[7] | 张吉栋, 杨展, 黄建国. 基于天然纤维素物质的C/TiO2/CuMoO4 微-纳结构复合纤维材料构筑及其电化学性能[J]. 储能科学与技术, 2023, 12(5): 1616-1624. |
[8] | 李金涛, 牟粤, 王静, 邱景义, 明海. 高镍正极材料的稳定改性方法研究综述[J]. 储能科学与技术, 2023, 12(5): 1636-1654. |
[9] | 王津, 张少飞, 孙金峰, 李田田. 纳米多孔合金快速燃烧氧化及高效储能研究[J]. 储能科学与技术, 2023, 12(5): 1480-1489. |
[10] | 赵玉文, 杨欢, 郭俊朋, 张毅, 孙琦, 张志佳. 磁性金属元素在钠离子电池中的应用[J]. 储能科学与技术, 2023, 12(5): 1332-1347. |
[11] | 周俊龙, 赵鲁康, 刘朝孟, 高宣雯, 骆文彬. 量子点及其复合材料作为碱金属离子电池负极的研究进展[J]. 储能科学与技术, 2023, 12(5): 1392-1408. |
[12] | 张顺, 曾芳磊, 李宁, 袁宁一. 高阻燃硫正极的制备及其性能[J]. 储能科学与技术, 2023, 12(4): 1018-1024. |
[13] | 申晓宇, 朱璟, 岑官骏, 乔荣涵, 郝峻丰, 田孟羽, 季洪祥, 金周, 武怿达, 詹元杰, 闫勇, 贲留斌, 俞海龙, 刘燕燕, 黄学杰. 锂电池百篇论文点评(2022.12.1—2023.1.31)[J]. 储能科学与技术, 2023, 12(3): 639-653. |
[14] | 祝玉婷, 闫共芹, 林羽芊. MoS2/RGO复合材料的电化学性能和第一性原理研究[J]. 储能科学与技术, 2023, 12(3): 698-709. |
[15] | 张德柳, 张言, 王海, 王佳东, 高宣雯, 刘朝孟, 杨东润, 骆文彬. 镁掺杂协同氧化铝包覆优化锂离子电池高镍正极材料[J]. 储能科学与技术, 2023, 12(2): 339-348. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||