1 |
SRIVASTAVA A, GUPTA M S, KAUR G. Energy efficient transmission trends towards future green cognitive radio networks (5G): Progress, taxonomy and open challenges[J]. Journal of Network and Computer Applications, 2020, 168: 102760.
|
2 |
MENG F X, ZHANG Q, LIN Y L, et al. Field study on the performance of a thermosyphon and mechanical refrigeration hybrid cooling system in a 5G telecommunication base station[J]. Energy, 2022, 252: 123744.
|
3 |
GANGADHAR B S K, CHANDRA SEKHAR K. Research challenges in 5G communication technology: Study[J]. Materials Today: Proceedings, 2022, 51: 1035-1037.
|
4 |
LUBRITTO C, PETRAGLIA A, VETROMILE C, et al. Energy and environmental aspects of mobile communication systems[J]. Energy, 2011, 36(2): 1109-1114.
|
5 |
WANG J Q, ZHANG Q, YU Y B. An advanced control of hybrid cooling technology for telecommunication base stations[J]. Energy and Buildings, 2016, 133: 172-184.
|
6 |
ZHOU F, CHEN J, MA G Y, et al. Energy-saving analysis of telecommunication base station with thermosyphon heat exchanger[J]. Energy and Buildings, 2013, 66: 537-544.
|
7 |
CHEN Y, ZHANG Y F, MENG Q L. Study of ventilation cooling technology for telecommunication base stations: Control strategy and application strategy[J]. Energy and Buildings, 2012, 50: 212-218.
|
8 |
张泉, 吴亚凝, 凌丽, 等. 基站用微通道分离式热管换热性能实验研究[J]. 湖南大学学报(自然科学版), 2016, 43(7): 139-145.
|
|
ZHANG Q, WU Y N, LING L, et al. Experimental investigation on heat transfer characteristic of micro-channel separate heat pipe in telecommunication base station[J]. Journal of Hunan University (Natural Sciences), 2016, 43(7): 139-145.
|
9 |
付继垚, 张泉, 孟凡希, 等. 5G机柜式热管空调一体机过渡季动态性能实测[J]. 科学技术与工程, 2022, 22(22): 9616-9622.
|
|
FU J Y, ZHANG Q, MENG F X, et al. Field dynamic performance of a thermosyphon and mechanical refrigeration hybrid cabinet-cooling system in a 5G telecommunication base station in transition season[J]. Science Technology and Engineering, 2022, 22(22): 9616-9622.
|
10 |
HE L H, ZHANG L. A bi-objective optimization of energy consumption and investment cost for public building envelope design based on the ε-constraint method[J]. Energy and Buildings, 2022, 266: 112133.
|
11 |
李琳, 王宇, 钱雯艳, 等. 相变建筑围护结构的应用及传热模拟综述[J]. 化工新型材料, 2022, 50(10): 52-56.
|
|
LI L, WANG Y, QIAN W Y, et al. Summaryof application and heat transfer simulation of phase change building envelope[J]. New Chemical Materials, 2022, 50(10): 52-56.
|
12 |
赵兰, 王国珍. 相变蓄热复合传热强化技术综述[J]. 储能科学与技术, 2022, 11(11): 3534-3547.
|
|
ZHAO L, WANG G Z. Summary of composite heat transfer enhancement technology of phase change heat storage[J]. Energy Storage Science and Technology, 2022, 11(11): 3534-3547.
|
13 |
LI Q, JU Z P, WANG Z G, et al. Thermal performance and economy of PCM foamed cement walls for buildings in different climate zones[J]. Energy and Buildings, 2022, 277: 112470.
|
14 |
罗振宇, 朱娜, 胡乃帅, 等. 双层定型相变围护结构夏季热特性实验研究[J]. 建筑科学, 2020, 36(8): 37-42, 91.
|
|
LUO Z Y, ZHUN, HU N S, et al. An experimental study on thermal characteristics of shapestabilized phase changematerial insummer[J]. Building Science, 2020, 36(8): 37-42, 91.
|
15 |
涂航, 张航, 刘丽辉, 等. 相变混凝土墙体的传热性能研究[J]. 储能科学与技术, 2021, 10(1): 287-294.
|
|
TU H, ZHANG H, LIU L H, et al. Study on heat transfer performance of phase change concrete wall[J]. Energy Storage Science and Technology, 2021, 10(1): 287-294.
|
16 |
孔祥飞, 刘少宁, 钟俞良, 等. 相变蓄能墙多因素热特性分析及优化研究[J]. 建筑科学, 2016, 32(8): 40-46.
|
|
KONG X F, LIU S N, ZHONG Y L, et al. Multivariate thermal performance analysis and optimization for phase change thermal storage wallboard[J]. Building Science, 2016, 32(8): 40-46.
|
17 |
MUSTAFA J, ALQAED S, SHARIFPUR M. Loading phase change material in a concrete based wall to enhance concrete thermal properties[J]. Journal of Building Engineering, 2022, 56: 104765.
|
18 |
ZHANG Y F, CHEN Y, WU J, et al. Study on energy efficient envelope design for telecommunication base station in Guangzhou[J]. Energy and Buildings, 2008, 40(10): 1895-1900.
|
19 |
ZHANG H Y, SUN X Q, ZHANG Q, et al. Estimating the adaptability of phase change material board on building envelope of telecommunications base stations[J]. Procedia Engineering, 2015, 121: 1665-1673.
|
20 |
HE W, YU C R, YANG J C, et al. Experimental study on the performance of a novel RC-PCM-wall[J]. Energy and Buildings, 2019, 199: 297-310.
|
21 |
BANIASSADI A, SAILOR D J, BAN-WEISS G A. Potential energy and climate benefits of super-cool materials as a rooftop strategy[J]. Urban Climate, 2019, 29: 100495.
|
22 |
GAO Y F, SHI D C, LEVINSON R, et al. Thermal performance and energy savings of white and sedum-tray garden roof: A case study in a Chongqing office building[J]. Energy and Buildings, 2017, 156: 343-359.
|
23 |
工业和信息化部. 通信局(站)机房环境条件要求与检测方法: YD/T1821—2018[S]. 北京: 人民邮电出版社, 2019.
|