1 |
何雅玲. 热储能技术在能源革命中的重要作用[J]. 科技导报, 2022, 40(4): 1-2.
|
|
HE Y L. Important role of thermal energy storage technology in energy revolution[J]. Science & Technology Review, 2022, 40(4): 1-2.
|
2 |
PADAMURTHY A, NANDANAVANAM J, RAJAGOPALAN P. Thermal stability evaluation of selected zeolites for sustainable thermochemical energy storage[J]. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects, 2021: 1-14.
|
3 |
NGUYEN M H, ZBAIR M, DUTOURNIÉ P, et al. Thermochemical sorption heat storage: Investigate the heat released from activated carbon beads used as porous host matrix for MgSO4 salt[J]. Journal of Energy Storage, 2023, 59: 106452.
|
4 |
张叶龙, 苗琪, 宋鹏飞, 等. 矿物基硫酸镁热化学吸附材料的制备与性能评价[J]. 储能科学与技术, 2023, 12(1): 42-50.
|
|
ZHANG Y L, MIAO Q, SONG P F, et al. Preparation and performance evaluation of mineral-based magnesium sulfate thermochemical adsorption materials[J]. Energy Storage Science and Technology, 2023, 12(1): 42-50.
|
5 |
ZHANG Y L, MIAO Q, JIA X, et al. Diatomite-based magnesium sulfate composites for thermochemical energy storage: Preparation and performance investigation[J]. Solar Energy, 2021, 224: 907-915.
|
6 |
ZHANG Y N, WANG R Z, LI T X. Thermochemical characterizations of high-stable activated alumina/LiCl composites with multistage sorption process for thermal storage[J]. Energy, 2018, 156: 240-249.
|
7 |
XU J X, LI T X, CHAO J W, et al. High energy-density multi-form thermochemical energy storage based on multi-step sorption processes[J]. Energy, 2019, 185: 1131-1142.
|
8 |
BRANCATO V, GORDEEVA L G, GREKOVA A D, et al. Water adsorption equilibrium and dynamics of LICL/MWCNT/PVA composite for adsorptive heat storage[J]. Solar Energy Materials and Solar Cells, 2019, 193: 133-140.
|
9 |
LI W, KLEMEŠ J J, WANG Q W, et al. Characterisation and sorption behaviour of[emailprotected]composite sorbents for thermochemical energy storage with controllable thermal upgradeability[J]. Chemical Engineering Journal, 2021, 421: 129586.
|
10 |
孙有改, 赵惠忠, 张峰, 等. 活性氧化铝/(LiCl+CaCl2)复合吸附剂水吸附性能研究[J]. 化学工程, 2022, 50(5): 6-11.
|
|
SUN Y G, ZHAO H Z, ZHANG F, et al. Research on water adsorption performance of activated alumina/(LiCl+CaCl2) composite adsorbent[J]. Chemical Engineering, 2022, 50(5): 6-11.
|
11 |
LI W, ZENG M, WANG Q W. Development and performance investigation of MgSO4/SrCl2 composite salt hydrate for mid-low temperature thermochemical heat storage[J]. Solar Energy Materials and Solar Cells, 2020, 210: 110509.
|
12 |
MIAO Q, ZHANG Y L, JIA X, et al. MgSO4-expanded graphite composites for mass and heat transfer enhancement of thermochemical energy storage[J]. Solar Energy, 2021, 220: 432-439.
|
13 |
FERNÁNDEZ A G, FULLANA M, CALABRESE L, et al. Corrosion assessment of promising hydrated salts as sorption materials for thermal energy storage systems[J]. Renewable Energy, 2020, 150: 428-434.
|
14 |
CHEN W, LI W, ZHANG Y S. Analysis of thermal deposition of MgCl2 ·6H2O hydrated salt in the sieve-plate reactor for heat storage[J]. Applied Thermal Engineering, 2018, 135: 95-108.
|
15 |
YAN T, ZHANG H. A critical review of salt hydrates as thermochemical sorption heat storage materials: Thermophysical properties and reaction kinetics[J]. Solar Energy, 2022, 242: 157-183.
|
16 |
LI W, KLEMEŠ J J, WANG Q W, et al. Energy storage of low potential heat using lithium hydroxide based sorbent for domestic heat supply[J]. Journal of Cleaner Production, 2021, 285: 124907.
|
17 |
KHARBANDA J S, YADAV S K, SONI V, et al. Modeling of heat transfer and fluid flow in epsom salt (MgSO4 ·7H2O) dissociation for thermochemical energy storage[J]. Journal of Energy Storage, 2020, 31: 101712.
|
18 |
JABBARI-HICHRI A, BENNICI S, AUROUX A. CaCl2-containing composites as thermochemical heat storage materials[J]. Solar Energy Materials and Solar Cells, 2017, 172: 177-185.
|
19 |
CLARK R J, FARID M. Hydration reaction kinetics of SrCl2 and SrCl2-cement composite material for thermochemical energy storage[J]. Solar Energy Materials and Solar Cells, 2021, 231: 111311.
|
20 |
WANG L Q, FU X J, CHANG E, et al. Preparation and its adsorptive property of modified expanded graphite nanomaterials[J]. Journal of Chemistry, 2014, 2014: 1-5.
|
21 |
ZHANG X L, WANG F F, ZHANG Q, et al. Heat storage performance analysis of ZMS-Porous media/CaCl2/MgSO4 composite thermochemical heat storage materials[J]. Solar Energy Materials and Solar Cells, 2021, 230: 111246.
|
22 |
ZHAO Q, LIN J Q, HUANG H T, et al. Enhancement of heat and mass transfer of potassium carbonate-based thermochemical materials for thermal energy storage[J]. Journal of Energy Storage, 2022, 50: 104259.
|
23 |
LI W, KLEMEŠ J J, WANG Q W, et al. Development and characteristics analysis of salt-hydrate based composite sorbent for low-grade thermochemical energy storage[J]. Renewable Energy, 2020, 157: 920-940.
|
24 |
XIA B Q, ZHAO C Y, YAN J, et al. Development of granular thermochemical heat storage composite based on calcium oxide[J]. Renewable Energy, 2020, 147: 969-978.
|
25 |
CAMMARATA A, VERDA V, SCIACOVELLI A, et al. Hybrid strontium bromide-natural graphite composites for low to medium temperature thermochemical energy storage: Formulation, fabrication and performance investigation[J]. Energy Conversion and Management, 2018, 166: 233-240.
|
26 |
PALOMBA V, SAPIENZA A, ARISTOV Y. Dynamics and useful heat of the discharge stage of adsorptive cycles for long term thermal storage[J]. Applied Energy, 2019, 248: 299-309.
|
27 |
D'ANS P, COURBON E, PERMYAKOVA A, et al. A new strontium bromide MOF composite with improved performance for solar energy storage application[J]. Journal of Energy Storage, 2019, 25: 100881.
|