储能科学与技术 ›› 2023, Vol. 12 ›› Issue (9): 3003-3018.doi: 10.19799/j.cnki.2095-4239.2023.0562

• 热点点评 • 上一篇    下一篇

锂电池百篇论文点评(2023.6.12023.7.31

岑官骏1(), 乔荣涵1, 申晓宇1, 朱璟1, 郝峻丰1, 孙蔷馥1, 张新新1, 田孟羽2, 金周2, 詹元杰2, 武怿达2, 闫勇2, 贲留斌1,2, 俞海龙1, 刘燕燕1, 黄学杰1,2()   

  1. 1.中国科学院物理研究所,北京 100190
    2.松山湖材料实验室,广东 东莞 523890
  • 收稿日期:2023-08-21 出版日期:2023-09-05 发布日期:2023-09-16
  • 通讯作者: 黄学杰 E-mail:cenguanjun15@mails.ucas.ac.cn;xjhuang@iphy.ac.cn
  • 作者简介:岑官骏(1997—),男,博士研究生,研究方向为锂离子电池,E-mail:cenguanjun15@mails.ucas.ac.cn

Reviews of selected 100 recent papers for lithium batteriesJun. 12023 to Jul. 312023

Guanjun CEN1(), Ronghan QIAO1, Xiaoyu SHEN1, Jing ZHU1, Junfeng HAO1, Qiangfu SUN1, Xinxin ZHANG1, Mengyu TIAN2, Zhou JIN2, Yuanjie ZHAN2, Yida WU2, Yong YAN2, Liubin BEN1,2, Hailong YU1, Yanyan LIU1, Xuejie HUANG1,2()   

  1. 1.Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
    2.Songshan Lake Materials Laboratory, Dongguan 523890, Guangdong, China
  • Received:2023-08-21 Online:2023-09-05 Published:2023-09-16
  • Contact: Xuejie HUANG E-mail:cenguanjun15@mails.ucas.ac.cn;xjhuang@iphy.ac.cn

摘要:

该文是一篇近两个月的锂电池文献评述,以“lithium”和“batter*”为关键词检索了Web of Science从2023年6月1日至2023年7月31日上线的锂电池研究论文,共有4463篇,选择其中100篇加以评论。正极材料的研究集中于富锂材料、镍酸锂、钴酸锂、尖晶石结构LiNi0.5Mn1.5O4材料的表面包覆、掺杂改性、前体及合成条件、长循环中的结构演变等。负极材料的研究重点包括硅基负极的界面调控、金属锂负极的界面构筑与调控。固态电解质的研究主要包括对硫化物固态电解质、氯化物固态电解质、聚合物固态电解质和复合固态电解质的结构设计以及相关性能研究。其他电解液和添加剂的研究则主要针对不同电解质和溶剂对各类电池材料体系适配的研究,以及对新的功能性添加剂的探索。固态电池、复合正极制备与界面修饰、锂金属负极的界面构筑和三维结构设计、电解质成膜技术有多篇文献报道。锂硫电池的研究重点是提高硫正极的活性,抑制“穿梭”效应。电池技术方面的研究还包括干法等电极制备技术。表征分析涵盖了锂沉积、硅负极演化、正极中锂离子输运和界面反应等方面。理论模拟工作涉及复合正极的应力和电导率分布及锂金属沉积行为,界面问题工作侧重于固态电池中电极界面的稳定性研究。

关键词: 锂电池, 正极材料, 负极材料, 电解质, 电池技术

Abstract:

This bimonthly review paper highlights a comprehensive overview of the latest research on lithium batteries. A total of 4463 online studies from June 1, 2023, to July 31, 2023, were examined through the Web of Science database, and 100 studies were selected for highlighting in this review. The selected studies cover various aspects of lithium batteries, focusing on cathode materials including Li-rich oxides, LiNiO2, LiCoO2, and LiNi0.5Mn1.5O4. Investigations into the effects of doping, interface modifications and preparation of precursors on their electrochemical performances and structural evolution during prolonged cycling are discussed. The methods for improving the cycling performances of Si-based anode focus on the interface modification. Great efforts have been devoted to construction of artificial interface, and controlling the inhomogeneous plating of lithium metal anode. Studies on solid-state electrolytes focus on the structure design and performances in sulfide-based, chloride-based, and polymer-based solid-state electrolytes and their composites. In contrast, liquid electrolytes are improved through optimal solvent and lithium salt design for different battery applications and incorporating novel functional additives. For solid-state batteries, the design of composite cathode, inhibition of Li dendrite and side reactions, and preparation of electrolyte film are studied. The works for lithium-sulfur batteries are mainly focused on the activation of sulfur and to suppress the "shuttle effect". In addition, this review presents work related to dry electrode coating technology, and the characterization techniques for lithium deposition, silicon evolution and lithium-ion transport in the cathode. Theoretical simulations are directed to the stress and conductivity distribution of composite cathode and lithium deposition. This review provides valuable insights into the advancements in lithium batteries, contributing to the overall understanding and progress in the field.

Key words: lithium batteries, cathode material, anode material, electrolyte, battery technology

中图分类号: