储能科学与技术 ›› 2023, Vol. 12 ›› Issue (9): 3003-3018.doi: 10.19799/j.cnki.2095-4239.2023.0562
岑官骏1(), 乔荣涵1, 申晓宇1, 朱璟1, 郝峻丰1, 孙蔷馥1, 张新新1, 田孟羽2, 金周2, 詹元杰2, 武怿达2, 闫勇2, 贲留斌1,2, 俞海龙1, 刘燕燕1, 黄学杰1,2()
收稿日期:
2023-08-21
出版日期:
2023-09-05
发布日期:
2023-09-16
通讯作者:
黄学杰
E-mail:cenguanjun15@mails.ucas.ac.cn;xjhuang@iphy.ac.cn
作者简介:
岑官骏(1997—),男,博士研究生,研究方向为锂离子电池,E-mail:cenguanjun15@mails.ucas.ac.cn;
Guanjun CEN1(), Ronghan QIAO1, Xiaoyu SHEN1, Jing ZHU1, Junfeng HAO1, Qiangfu SUN1, Xinxin ZHANG1, Mengyu TIAN2, Zhou JIN2, Yuanjie ZHAN2, Yida WU2, Yong YAN2, Liubin BEN1,2, Hailong YU1, Yanyan LIU1, Xuejie HUANG1,2()
Received:
2023-08-21
Online:
2023-09-05
Published:
2023-09-16
Contact:
Xuejie HUANG
E-mail:cenguanjun15@mails.ucas.ac.cn;xjhuang@iphy.ac.cn
摘要:
该文是一篇近两个月的锂电池文献评述,以“lithium”和“batter*”为关键词检索了Web of Science从2023年6月1日至2023年7月31日上线的锂电池研究论文,共有4463篇,选择其中100篇加以评论。正极材料的研究集中于富锂材料、镍酸锂、钴酸锂、尖晶石结构LiNi0.5Mn1.5O4材料的表面包覆、掺杂改性、前体及合成条件、长循环中的结构演变等。负极材料的研究重点包括硅基负极的界面调控、金属锂负极的界面构筑与调控。固态电解质的研究主要包括对硫化物固态电解质、氯化物固态电解质、聚合物固态电解质和复合固态电解质的结构设计以及相关性能研究。其他电解液和添加剂的研究则主要针对不同电解质和溶剂对各类电池材料体系适配的研究,以及对新的功能性添加剂的探索。固态电池、复合正极制备与界面修饰、锂金属负极的界面构筑和三维结构设计、电解质成膜技术有多篇文献报道。锂硫电池的研究重点是提高硫正极的活性,抑制“穿梭”效应。电池技术方面的研究还包括干法等电极制备技术。表征分析涵盖了锂沉积、硅负极演化、正极中锂离子输运和界面反应等方面。理论模拟工作涉及复合正极的应力和电导率分布及锂金属沉积行为,界面问题工作侧重于固态电池中电极界面的稳定性研究。
中图分类号:
岑官骏, 乔荣涵, 申晓宇, 朱璟, 郝峻丰, 孙蔷馥, 张新新, 田孟羽, 金周, 詹元杰, 武怿达, 闫勇, 贲留斌, 俞海龙, 刘燕燕, 黄学杰. 锂电池百篇论文点评(2023.6.1—2023.7.31)[J]. 储能科学与技术, 2023, 12(9): 3003-3018.
Guanjun CEN, Ronghan QIAO, Xiaoyu SHEN, Jing ZHU, Junfeng HAO, Qiangfu SUN, Xinxin ZHANG, Mengyu TIAN, Zhou JIN, Yuanjie ZHAN, Yida WU, Yong YAN, Liubin BEN, Hailong YU, Yanyan LIU, Xuejie HUANG. Reviews of selected 100 recent papers for lithium batteries (Jun. 1, 2023 to Jul. 31, 2023)[J]. Energy Storage Science and Technology, 2023, 12(9): 3003-3018.
1 | LI J X, XU H Y, LI J E, et al. Construction of inorganic-rich cathode electrolyte interphase on co-free cathodes[J]. ACS Applied Materials & Interfaces, 2023, 15(22): 26627-26636. |
2 | RUESS R, GOMBOSO D, ULHERR M A, et al. Single-crystalline LiNiO2 as high-capacity cathode active material for solid-state lithium-ion batteries[J]. Journal of the Electrochemical Society, 2023: doi: 10.1149/1945-7111/acbc4f. |
3 | SUN C, ZHAO B, CUI R D, et al. In situ-constructed multifunctional interface for high-voltage 4.6 V LiCoO2[J]. ACS Applied Materials & Interfaces, 2023, 15(18): 21982-21993. |
4 | STÜBLE P, MÜLLER M, BERGFELDT T, et al. Cycling stability of lithium-ion batteries based on Fe-Ti-doped LiNi0.5Mn1.5O4 cathodes, graphite anodes, and the cathode-additive Li3PO4[J]. Advanced Science, 2023: doi: 10.1002/advs.202301874:e2301874-e2301874. |
5 | GHAUR A, PESCHEL C, DIENWIEBEL I, et al. Effective SEI formation via phosphazene-based electrolyte additives for stabilizing silicon-based lithium-ion batteries[J]. Advanced Energy Materials, 2023, 13(26): doi: 10.1002/aenm.202203503. |
6 | WU B L, CHEN C G, DANILOV D L, et al. Dual additives for stabilizing Li deposition and SEI formation in anode-free Li-metal batteries[J]. Energy & Environmental Materials, 2023: doi: 10.1002/eem2.12642. |
7 | AN K, JOO M J, TRAN Y H T, et al. Ultrafast charging of a 4.8 V manganese-rich cathode-based lithium metal cell by constructing robust solid electrolyte interphases[J]. Advanced Functional Materials, 2023, 33(29): doi: 10.1002/adfm.202301755. |
8 | SUN J R, ZHANG S, LI J D, et al. Robust transport: An artificial solid electrolyte interphase design for anode-free lithium-metal batteries[J]. Advanced Materials, 2023, 35(20): doi: 10.1002/adma.202209404. |
9 | HUANG Z J, LAI J C, LIAO S L, et al. A salt-philic, solvent-phobic interfacial coating design for lithium metal electrodes[J]. Nature Energy, 2023, 8(6): 577-585. |
10 | KWON H, CHOI H J, JANG J K, et al. Weakly coordinated Li ion in single-ion-conductor-based composite enabling low electrolyte content Li-metal batteries[J]. Nature Communications, 2023, 14: 4047. |
11 | LIU Q, JIANG W, XU J Y, et al. A fluorinated cation introduces new interphasial chemistries to enable high-voltage lithium metal batteries[J]. Nature Communications, 2023, 14: 3678. |
12 | FENG Y Y, LI Y, LIN J, et al. Production of high-energy 6 Ah-level Li |u2009|LiNi0.83Co0.11Mn0.06O2 multi-layer pouch cells via negative electrode protective layer coating strategy[J]. Nature Communications, 2023, 14: 3639. |
13 | KIM H M, SUBRAMANIAN Y, RYU K S. I-rich thioantimonate argyrodite glass-ceramic electrolyte with high air stability and compatibility with lithium[J]. ACS Applied Energy Materials, 2023, 6(11): 6072-6079. |
14 | ARNOLD W, SHREYAS V, AKTER S, et al. Highly conductive iodine and fluorine dual-doped argyrodite solid electrolyte for lithium metal batteries[J]. The Journal of Physical Chemistry C, 2023, 127(25): 11801-11809. |
15 | LI Y X, SONG S B, KIM H, et al. A lithium superionic conductor for millimeter-thick battery electrode[J]. Science, 2023, 381(6653): 50-53. |
16 | JIANG Z, LIU Y, PENG H L, et al. Enhanced air stability and interfacial compatibility of Li-argyrodite sulfide electrolyte triggered by CuBr co-substitution for all-solid-state lithium batteries[J]. Energy Storage Materials, 2023, 56: 300-309. |
17 | SANO H, MORINO Y, MATSUMURA Y, et al. Surface degeneration of Li3PS4-LiIglass-ceramic electrolyte by exposure to humidity-controlled air and its recovery by thermal treatment[J]. Electrochemistry, 2023, 91(5): 057004. |
18 | KWAK H, KIM J S, HAN D, et al. Boosting the interfacial superionic conduction of halide solid electrolytes for all-solid-state batteries[J]. Nature Communications, 2023, 14: 2459. |
19 | HU L, WANG J Z, WANG K, et al. A cost-effective, ionically conductive and compressible oxychloride solid-state electrolyte for stable all-solid-state lithium-based batteries[J]. Nature Communications, 2023, 14: 3807. |
20 | ZHANG S M, ZHAO F P, CHEN J T, et al. A family of oxychloride amorphous solid electrolytes for long-cycling all-solid-state lithium batteries[J]. Nature Communications, 2023, 14: 3780. |
21 | SHI P R, MA J B, LIU M, et al. A dielectric electrolyte composite with high lithium-ion conductivity for high-voltage solid-state lithium metal batteries[J]. Nature Nanotechnology, 2023, 18(6): 602-610. |
22 | KANG B H, LI S F, YANG J L, et al. Uniform lithium plating for dendrite-free lithium metal batteries: Role of dipolar channels in poly (vinylidene fluoride) and PbZrxTi1- xO3 interface[J]. ACS Nano, 2023, 17(14): 14114-14122. |
23 | PRAKASH P, FALL B, AGUIRRE J, et al. A soft co-crystalline solid electrolyte for lithium-ion batteries[J]. Nature Materials, 2023, 22(5): 627-635. |
24 | WANG X X, SONG L N, ZHENG L J, et al. Polymers with intrinsic microporosity as solid ion conductors for solid-state lithium batteries[J]. Angewandte Chemie, 2023: doi: 10.1002/anie. 202308837:e202308837-e202308837. |
25 | LIU Z Z, YU Q A, OLI N, et al. A non-volatile, thermo-reversible, and self-protective gel electrolyte providing highly precise and reversible thermal protection for lithium batteries[J]. Advanced Energy Materials, 2023, 13(22): doi: 10.1002/aenm.202300143. |
26 | ZHANG C X, LU Z, SONG M A, et al. Highly oxidation-resistant ether gel electrolytes for 4.7 V high-safety lithium metal batteries[J]. Advanced Energy Materials, 2023, doi: 10.1002/aenm.202203870. |
27 | ZHANG Q, LIU Z W, SONG X S, et al. Ordered and fast ion transport of quasi-solid-state electrolyte with regulated coordination strength for lithium metal batteries[J]. Angewandte Chemie International Edition, 2023, 62(30): doi: 10.1002/anie.202302559. |
28 | ZHOU J Q, MENG Y A, SHEN D N, et al. Empowering quasi-solid electrolyte with smart thermoresistance and damage repairability to realize safer lithium metal batteries[J]. The Journal of Physical Chemistry Letters, 2023, 14(19): 4482-4489. |
29 | LI K, WANG J F, SONG Y Y, et al. Machine learning-guided discovery of ionic polymer electrolytes for lithium metal batteries[J]. Nature Communications, 2023, 14: 2789. |
30 | ZHANG G, LI J, WANG Q, et al. A nonflammable electrolyte for high-voltage lithium metal batteries[J]. ACS Energy Letters, 2023, doi: 10.1021/acsenergylett.3c00706. |
31 | LU Y, ZHANG W L, LIU S Z, et al. Tuning the Li+ solvation structure by a "bulky coordinating" strategy enables nonflammable electrolyte for ultrahigh voltage lithium metal batteries[J]. ACS Nano, 2023, 17(10): 9586-9599. |
32 | ZHANG J B, ZHANG H K, WENG S T, et al. Multifunctional solvent molecule design enables high-voltage Li-ion batteries[J]. Nature Communications, 2023, 14: 2211. |
33 | LEE J N, JEON A R, LEE H J, et al. Molecularly engineered linear organic carbonates as practically viable nonflammable electrolytes for safe Li-ion batteries[J]. Energy & Environmental Science, 2023, 16(7): 2924-2933. |
34 | LIU J X, DONG T, YUAN X D, et al. Exceptional Li-rich Mn-based cathodes enabled by robust interphase and modulated solvation microstructures via anion synergistic strategy[J]. Advanced Energy Materials, 2023, 13(24): doi: 10.1002/aenm.202300680. |
35 | XU J J, ZHANG J X, POLLARD T P, et al. Electrolyte design for Li-ion batteries under extreme operating conditions[J]. Nature, 2023, 614(7949): 694-700. |
36 | MAO M L, JI X, WANG Q Y, et al. Anion-enrichment interface enables high-voltage anode-free lithium metal batteries[J]. Nature Communications, 2023, 14: 1082. |
37 | LAI J W, HUANG Y T, ZENG X Y, et al. Molecular design of asymmetric cyclophosphamide as electrolyte additive for high-voltage lithium-ion batteries[J]. ACS Energy Letters, 2023, 8(5): 2241-2251. |
38 | PFEIFFER F, DIDDENS D, WEILING M, et al. Quadrupled cycle life of high-voltage nickel-rich cathodes: Understanding the effective thiophene-boronic acid-based CEI via operando SHINERS[J]. Advanced Energy Materials, 2023, 13(25): doi: 10.1002/aenm.202300827. |
39 | VU D T T, IM J, KIM J H, et al. Lithium plating-free 1 Ah-level high-voltage lithium-ion pouch battery via ambi-functional pentaerythritol disulfate[J]. Journal of Energy Chemistry, 2023, 83: 229-238. |
40 | ZHU J, ZHANG M Y, GAI Y Y, et al. Quickly form stable cathode/electrolyte interface of LiNi0.5Mn1.5O4 (LNMO)/graphite high-voltage lithium ion cells by using tosylmethyl isocyanide (TosMIC) as electrolyte additive[J]. Journal of Power Sources, 2023, 576: 233227. |
41 | WANG K, GU Z Q, XI Z W, et al. Li3TiCl6 as ionic conductive and compressible positive electrode active material for all-solid-state lithium-based batteries[J]. Nature Communications, 2023, 14: 1396. |
42 | SU Y, LIU X S, YAN H, et al. Assembly of an elastic & sticky interfacial layer for sulfide-based all-solid-state batteries[J]. Nano Energy, 2023, 113: 108572. |
43 | LIANG J W, ZHU Y M, LI X N, et al. A gradient oxy-thiophosphate-coated Ni-rich layered oxide cathode for stable all-solid-state Li-ion batteries[J]. Nature Communications, 2023, 14: 146. |
44 | KIM J, KIM M J, KIM J, et al. High-performance all-solid-state batteries enabled by intimate interfacial contact between the cathode and sulfide-based solid electrolytes[J]. Advanced Functional Materials, 2023, 33(12): 2211355. |
45 | PENG J A, WANG X E, LI H, et al. High-capacity, long-life iron fluoride all-solid-state lithium battery with sulfide solid electrolyte[J]. Advanced Energy Materials, 2023, 13(23): doi: 10.1002/aenm.202300706. |
46 | ASAKURA T, INAOKA T, HOTEHAMA C, et al. Stack pressure dependence of Li stripping/plating performance in all-solid-state Li metal cells containing sulfide glass electrolytes[J]. ACS Applied Materials & Interfaces, 2023, 15(26): 31403-31408. |
47 | GAO M, GONG Z N, LI H Q, et al. Constructing a multifunctional interlayer toward ultra-high critical current density for garnet-based solid-state lithium batteries[J]. Advanced Functional Materials, 2023, 33(22): doi: 10.1002/adfm.202300319. |
48 | PANG B, WU Z, ZHANG W K, et al. Ag nanoparticles incorporated interlayer enables ultrahigh critical current density for Li6PS5Cl-based all-solid-state lithium batteries[J]. Journal of Power Sources, 2023, 563: 232836. |
49 | WAN H L, WANG Z Y, LIU S F, et al. Critical interphase overpotential as a lithium dendrite-suppression criterion for all-solid-state lithium battery design[J]. Nature Energy, 2023, 8(5): 473-481. |
50 | HUANG W Z, LIU Z Y, XU P, et al. High-areal-capacity anode-free all-solid-state lithium batteries enabled by interconnected carbon-reinforced ionic-electronic composites[J]. Journal of Materials Chemistry A, 2023, 11(24): 12713-12718. |
51 | YAN W L, MU Z L, WANG Z X, et al. Hard-carbon-stabilized Li-Si anodes for high-performance all-solid-state Li-ion batteries[J]. Nature Energy, 2023, 8: 800-813. |
52 | INAOKA T, ASAKURA T, OTOYAMA M, et al. Tin interlayer at the Li/Li3PS4 interface for improved Li stripping/plating performance[J]. The Journal of Physical Chemistry C, 2023, 127(22): 10453-10458. |
53 | FAN B, GUAN Z B, WU L L, et al. Particle size control of cathode components for high-performance all-solid-state lithium-sulfur batteries[J]. Journal of the American Ceramic Society, 2023, 106(10): 5781-5794. |
54 | WANG D, JHANG L-J, KOU R, et al. Realizing high-capacity all-solid-state lithium-sulfur batteries using a low-density inorganic solid-state electrolyte[J]. Nature Communications, 2023, 14: doi: 10.1038/s41467-023-37564-z. |
55 | WANG S, ZHOU J B, FENG S J, et al. Polythiocyanogen as cathode materials for high temperature all-solid-state lithium-sulfur batteries[J]. ACS Energy Letters, 2023, 8(6): 2699-2706. |
56 | ZHONG H Y, SU Y, WU Y Q, et al. Long-life and high-loading all-solid-state Li-S batteries enabled by acetylene black with dispersed Co-N4 as single atom catalyst[J]. Advanced Energy Materials, 2023, 13(25): doi: 10.1002/aenm.202300767. |
57 | JING S H, SHEN H Q, HUANG Y T, et al. Toward the practical and scalable fabrication of sulfide-based all-solid-state batteries: Exploration of slurry process and performance enhancement via the addition of LiClO4[J]. Advanced Functional Materials, 2023, 33(24): doi: 10.1002/adfm.202214274. |
58 | FUTSCHER M H, BRINKMAN L, MÜLLER A, et al. Monolithically-stacked thin-film solid-state batteries[J]. Communications Chemistry, 2023, 6: 110. |
59 | FAN Q N, ZHANG S L, JIANG J C, et al. A green and effective organocatalyst for faster oxidation of Li2S in electrochemical processes[J]. Advanced Functional Materials, 2023: doi: 10.1002/adfm.202212796. |
60 | MAHATO M, NAM S, LEE M J, et al. Physicochemically interlocked sulfur covalent triazine framework for lithium-sulfur batteries with exceptional longevity[J]. Small, 2023, 19(30): doi: 10.1002/smll.202301847. |
61 | LI Y N, DENG Y R, YANG J L, et al. Bidirectional catalyst with robust lithiophilicity and sulfiphilicity for advanced lithium-sulfur battery[J]. Advanced Functional Materials, 2023: doi: 10.1002/adfm.202302267. |
62 | XING H S, GUO W L, TANG S A, et al. Long-life, high-rate rechargeable lithium batteries based on soluble bis(2-pyrimidyl) disulfide cathode[J]. Angewandte Chemie, 2023: doi: 10.1002/anie.202308561: e202308561-e202308561. |
63 | YI Y K, HAI F, TIAN X L, et al. A novel sulfurized polypyrrole composite for high-performance lithium-sulfur batteries based on solid-phase conversion[J]. Chemical Engineering Journal, 2023, 466: 143303. |
64 | FAN Q Q, SI Y B, ZHU F L, et al. Activation of bulk Li2S as cathode material for lithium-sulfur batteries through organochalcogenide-based redox mediation chemistry[J]. Angewandte Chemie International Edition, 2023, 62(32): doi: 10.1002/anie.202306705. |
65 | LAI T X, BHARGAV A, MANTHIRAM A. Lithium tritelluride as an electrolyte additive for stabilizing lithium deposition and enhancing sulfur utilization in anode-free lithium-sulfur batteries[J]. Advanced Functional Materials, 2023: doi: 10.1002/adfm.202304568. |
66 | GYULAI A, BAUER W, EHRENBERG H. Dry electrode manufacturing in a calender: The role of powder premixing for electrode quality and electrochemical performance[J]. ACS Applied Energy Materials, 2023, 6(10): 5122-5134. |
67 | WANG H A, LI J B, MIAO Z Y, et al. Hierarchical electrode architecture enabling ultrahigh-capacity LiFePO4 cathodes with low tortuosity[J]. ACS Applied Materials & Interfaces, 2023, 15(22): 26824-26833. |
68 | TRON A, HAMID R, ZHANG N X, et al. Rational optimization of cathode composites for sulfide-based all-solid-state batteries[J]. Nanomaterials, 2023, 13(2): 327. |
69 | BERNARD J C, HESTENES J C, MAYILVAHANAN K S, et al. Investigating the influence of polymer binders on liquid phase transport and tortuosity through lithium-ion electrodes[J]. Journal of the Electrochemical Society, 2023, 170(3): 030518. |
70 | RYU M, HONG Y K, LEE S Y, et al. Ultrahigh loading dry-process for solvent-free lithium-ion battery electrode fabrication[J]. Nature Communications, 2023, 14: 1316. |
71 | SU X, FANG H, YANG H, et al. Cellulose sulfate lithium as a conductive binder for LiFePO4 cathode with long cycle life[J]. Carbohydrate Polymers, 2023, 313: 120848. |
72 | PARK J H, KIM S H, AHN K H. Role of carboxymethyl cellulose binder and its effect on the preparation process of anode slurries for Li-ion batteries[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2023, 664: 131130. |
73 | CHANG B, YUN D H, HWANG I, et al. Carrageenan as a sacrificial binder for 5 V LiNi0.5Mn1.5O4 cathodes in lithium-ion batteries[J]. Advanced materials, 2023, doi: 10.1002/adma.202303787:e2303787-e2303787. |
74 | PARK G, KIM H S, LEE K J. Solvent-free processed cathode slurry with carbon nanotube conductors for Li-ion batteries[J]. Nanomaterials, 2023, 13(2): 324. |
75 | TRAN H Y, LINDNER A, MENESKLOU W, et al. Toward calenderability of high-energy cathode based on NMC622 during the roll-to-roll process[J]. Energy Technology, 2023, 11(5): doi: 10.1002/ente.202201092. |
76 | BUECHELE S, LOGAN E, BOULANGER T, et al. Reversible self-discharge of LFP/graphite and NMC811/graphite cells originating from redox shuttle generation[J]. Journal of the Electrochemical Society, 2023, 170(1): 010518. |
77 | AHN S, ZOR C, YANG S X, et al. Why charging Li-air batteries with current low-voltage mediators is slow and singlet oxygen does not explain degradation[J]. Nature Chemistry, 2023, 15(7): 1022-1029. |
78 | PARK J, WATANABE T, YAMAMOTO K, et al. Unique Li deposition behavior in Li3PS4 solid electrolyte observed via operando X-ray computed tomography[J]. Chemical Communications, 2023, 59(50): 7799-7802. |
79 | HUANG Y, PERLMUTTER D, SU A F H, et al. Detecting lithium plating dynamics in a solid-state battery with operando X-ray computed tomography using machine learning[J]. NPJ Computational Materials, 2023, 9: 93. |
80 | NING Z Y, LI G C, MELVIN D L R, et al. Dendrite initiation and propagation in lithium metal solid-state batteries[J]. Nature, 2023, 618: 287-293. |
81 | WERET M A, JIANG S K, SHITAW K N, et al. Reviving inactive lithium and stabilizing lithium deposition for improving the performance of anode-free lithium-sulfur batteries[J]. ACS Energy Letters, 2023, 8(6): 2817-2823. |
82 | GU Y, YOU E M, LIN J D, et al. Resolving nanostructure and chemistry of solid-electrolyte interphase on lithium anodes by depth-sensitive plasmon-enhanced Raman spectroscopy[J]. Nature Communications, 2023, 14: 3536. |
83 | CRESSA L, SUN Y Y, ANDERSEN D, et al. Toward Operando structural, chemical, and electrochemical analyses of solid-state batteries using correlative secondary ion mass spectrometry imaging[J]. Analytical Chemistry, 2023, 95(26): 9932-9939. |
84 | BRADBURY R, KARDJILOV N, DEWALD G F, et al. Visualizing lithium ion transport in solid-state Li-S batteries using 6Li contrast enhanced neutron imaging[J]. Advanced Functional Materials, 2023: doi: 10.1002/adfm.202302619. |
85 | BASAK S, PARK J, JO J, et al. Screening of coatings for an all-solid-state battery using in situ transmission electron microscopy[J]. Journal of Visualized Experiments, 2023(191): doi: 10.3791/64316. |
86 | LIM J, ZHOU Y D, POWELL R H, et al. Localised degradation within sulfide-based all-solid-state electrodes visualised by Raman mapping[J]. Chemical Communications, 2023, 59(51): 7982-7985. |
87 | AI Q, CHEN Z Y, ZHANG B Y, et al. High-spatial-resolution quantitative chemomechanical mapping of organic composite cathodes for sulfide-based solid-state batteries[J]. ACS Energy Letters, 2023, 8(2): 1107-1113. |
88 | QUEMIN E, DUGAS R, CHAUPATNAIK A, et al. An advanced cell for measuring in situ electronic conductivity evolutions in all-solid-state battery composites[J]. Advanced Energy Materials, 2023: doi: 10.1002/aenm.202301105. |
89 | CHEN Y, WU W K, GONZALEZ-MUNOZ S, et al. Nanoarchitecture factors of solid electrolyte interphase formation via 3D nano-rheology microscopy and surface force-distance spectroscopy[J]. Nature Communications, 2023, 14: 1321. |
90 | WANG W, WANG J X, LIN C, et al. Modeling of void-mediated cracking and lithium penetration in all-solid-state batteries[J]. Advanced Functional Materials, 2023: doi: 10.1002/adfm.202303484. |
91 | FRANKE-LANG R, HILGER A, MANKE I, et al. 3D multiscale lithium-ion cell modeling for LiFePO4 freeze-casted electrode structures using synchrotron X-ray and FIB/SEM tomography[J]. Advanced Theory and Simulations, 2023: doi: 10.1002/adts.202300372. |
92 | WERRES M, XU Y B, JIA H, et al. Origin of heterogeneous stripping of lithium in liquid electrolytes[J]. ACS Nano, 2023, 17(11): 10218-10228. |
93 | AL-JALJOULI F, MÜCKE R, KAGHAZCHI P, et al. Microstructural parameters governing the mechanical stress and conductivity of all-solid-state lithium-ion-battery cathodes[J]. Journal of Energy Storage, 2023, 68: 107784. |
94 | GANDERT J C, MÜLLER M, PAARMANN S, et al. Effective thermal conductivity of lithium-ion battery electrodes in dependence on the degree of calendering[J]. Energy Technology, 2023, 11(8): doi: 10.1002/ente.202300259. |
95 | LOHRBERG O, VOIGT K, MALETTI S, et al. Benchmarking and critical design considerations of zero-excess Li-metal batteries[J]. Advanced Functional Materials, 2023, 33(24): doi: 10.1002/adfm.202214891. |
96 | ZHANG X H, HUANG L, XIE B, et al. Deciphering the thermal failure mechanism of anode-free lithium metal pouch batteries[J]. Advanced Energy Materials, 2023, 13(8): doi: 10.1002/aenm. 202203648. |
97 | KIM W, NOH J, LEE S, et al. Aging property of halide solid electrolyte at the cathode interface[J]. Advanced Materials, 2023, 35(32): e2301631. |
98 | MORINO Y, KANADA S. Degradation analysis by X-ray absorption spectroscopy for LiNbO3 coating of sulfide-based all-solid-state battery cathode[J]. ACS Applied Materials & Interfaces, 2023, 15(2): 2979-2984. |
99 | MORINO Y, TSUKASAKI H, MORI S. Microscopic degradation mechanism of argyrodite-type sulfide at the solid electrolyte-cathode interface[J]. ACS Applied Materials & Interfaces, 2023, 15(19): 23051-23057. |
100 | IHRIG M, KUO L Y, LOBE S, et al. Thermal recovery of the electrochemically degraded LiCoO2/Li7La3Zr2O12: Al, Ta interface in an all-solid-state lithium battery[J]. ACS Applied Materials & Interfaces, 2023, 15(3): 4101-4112. |
[1] | 詹世英, 李欢欢, 胡方. 水系锌离子电容器正极材料的研究进展[J]. 储能科学与技术, 2023, 12(9): 2799-2810. |
[2] | 李岳峰, 韦银涛, 彭宪州, 项峰, 王杭烽, 孙勇, 徐卫潘, 黄文强. 海拔高度对储能锂电池包强制风冷系统影响的热仿真分析及优化设计[J]. 储能科学与技术, 2023, 12(9): 2954-2961. |
[3] | 周向阳, 胡颖杰, 梁家浩, 周其杰, 文康, 陈松, 杨娟, 唐晶晶. 天然鳞片石墨球化尾料的高性能负极材料制备及储锂特性研究[J]. 储能科学与技术, 2023, 12(9): 2767-2777. |
[4] | 江婉薇, 梁呈景, 钱历, 刘梅城, 朱孟想, 马骏. 锡基三维石墨烯泡沫调控及其锂电池负极性能[J]. 储能科学与技术, 2023, 12(9): 2746-2751. |
[5] | 申江卫, 周灿彪, 舒星, 陈峥, 刘永刚. 宽温度环境下基于改进电化学模型的锂电池荷电状态估计[J]. 储能科学与技术, 2023, 12(9): 2904-2916. |
[6] | 张梓楠, 陈剑. Nb掺杂Na3V2O2 (PO4 ) 2F空心微球钠离子电池正极材料的制备与性能[J]. 储能科学与技术, 2023, 12(8): 2370-2381. |
[7] | 赵争光, 陈振营, 翟光群, 张希, 庄小东. Sc/O掺杂硫化物固态电解质的制备及全固态电池性能[J]. 储能科学与技术, 2023, 12(8): 2412-2423. |
[8] | 刘欢, 彭娜, 高清雯, 李文鹏, 杨志荣, 王景涛. 冠醚掺杂的聚合物固态电解质对全固态锂电池性能的影响[J]. 储能科学与技术, 2023, 12(8): 2401-2411. |
[9] | 刘志浩, 杜童, 李瑞瑞, 邓涛. 宽温域、高电压、安全无EC电解液研究进展[J]. 储能科学与技术, 2023, 12(8): 2504-2525. |
[10] | 张鼎, 叶子贤, 刘镇铭, 易群, 史利娟, 郭慧娟, 黄毅, 王莉, 何向明. 钠离子电池黑磷基负极材料研究进展[J]. 储能科学与技术, 2023, 12(8): 2482-2490. |
[11] | 汪红辉, 刘一凡, 储德韧. 不同荷电状态钛酸锂电池高温日历老化研究[J]. 储能科学与技术, 2023, 12(8): 2606-2614. |
[12] | 张吉禄, 董育辰, 宋强, 袁思鸣, 郭孝东. 多晶及单晶高镍三元材料LiNi0.9Co0.05Mn0.05O2 的可控制备及其电化学储锂特性[J]. 储能科学与技术, 2023, 12(8): 2382-2389. |
[13] | 杲齐新, 赵景腾, 李国兴. 锂离子电池快速充电研究进展[J]. 储能科学与技术, 2023, 12(7): 2166-2184. |
[14] | 马敬轩, 宋宇航, 石爽, 吕娜伟, 尹康涌, 王桂荣, 杜开源, 金阳. 基于气压信号突变探测的液冷型磷酸铁锂电池模组热失控预警研究[J]. 储能科学与技术, 2023, 12(7): 2246-2255. |
[15] | 乔荣涵, 朱璟, 申晓宇, 岑官骏, 郝峻丰, 季洪祥, 田孟羽, 金周, 詹元杰, 武怿达, 闫勇, 贲留斌, 俞海龙, 刘燕燕, 黄学杰. 锂电池百篇论文点评(2023.4.1—2023.5.31)[J]. 储能科学与技术, 2023, 12(7): 2333-2348. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||