储能科学与技术 ›› 2024, Vol. 13 ›› Issue (1): 92-112.doi: 10.19799/j.cnki.2095-4239.2023.0740
• 高比能二次电池关键材料与先进表征专刊 • 上一篇 下一篇
王盼晴1(), 黄彦杰1, 何一芃1, 陈祁恒1, 尹提1, 陈伟豪1, 谭磊2, 宁天翔1, 邹康宇1(), 李灵均1()
收稿日期:
2023-10-24
修回日期:
2023-10-31
出版日期:
2024-01-05
发布日期:
2024-01-22
通讯作者:
邹康宇,李灵均
E-mail:wangpanqing@stu.csust.edu.cn;ky-zou@csust.edu.cn;lingjun.li@csust.edu.cn
作者简介:
王盼晴(2000—),女,硕士研究生,研究方向为新能源材料与器件,E-mail:wangpanqing@stu.csust.edu.cn;
基金资助:
Panqing WANG1(), Yanjie HUANG1, Yipeng HE1, Qiheng CHEN1, Ti YIN1, Weihao CHEN1, Lei TAN2, Tianxiang NING1, Kangyu ZOU1(), Lingjun LI1()
Received:
2023-10-24
Revised:
2023-10-31
Online:
2024-01-05
Published:
2024-01-22
Contact:
Kangyu ZOU, Lingjun LI
E-mail:wangpanqing@stu.csust.edu.cn;ky-zou@csust.edu.cn;lingjun.li@csust.edu.cn
摘要:
目前锂离子电池的电化学性能和成本在很大程度上取决于正极材料,其中,具有高比容量和高工作电压等优点的高镍层状正极材料被广泛关注。然而,其表面的锂残渣会严重影响电极的制备和电池的电化学性能,限制了其在新能源汽车等领域的大规模应用。因此,高镍层状正极材料表面锂残渣的研究在进一步提升材料性能和电池安全性能等方面具有重要意义。本文综述了近年来高镍层状正极材料表面锂残渣的研究进展,从锂残渣形成机理,对高镍层状正极材料的影响以及酸碱滴定、傅里叶红外光谱、飞行时间二次离子质谱、固态核磁共振及热重分析结合质谱等锂残渣含量检测方法方面展开,总结了利用去除、物理包覆及原位再利用三种方法有效消除锂残渣对高镍层状正极材料的影响,改善其性能,并对进一步消除锂残渣对正极材料及锂离子电池的影响进行了展望。同时,本文针对锂残渣的展望及研究也同样适用于钠离子电池正极材料表面的钠残渣。本文旨在突出锂残渣原位再利用在高镍层状正极材料改性研究中的应用潜力,为锂离子电池的研究发展提供新的思路。
中图分类号:
王盼晴, 黄彦杰, 何一芃, 陈祁恒, 尹提, 陈伟豪, 谭磊, 宁天翔, 邹康宇, 李灵均. 高镍正极材料表面锂残渣的研究进展[J]. 储能科学与技术, 2024, 13(1): 92-112.
Panqing WANG, Yanjie HUANG, Yipeng HE, Qiheng CHEN, Ti YIN, Weihao CHEN, Lei TAN, Tianxiang NING, Kangyu ZOU, Lingjun LI. Research progress on the surface lithium residue of high-nickel cathode materials[J]. Energy Storage Science and Technology, 2024, 13(1): 92-112.
1 | OH S W, MYUNG S T, OH S M, et al. Double carbon coating of LiFePO4 as high rate electrode for rechargeable lithium batteries[J]. Advanced Materials, 2010, 22(43): 4842-4845. |
2 | LI Y J, ZHANG D Y, YAN Y X, et al. Enhanced electrochemical properties of SiO2-Li2SiO3-coated NCM811 cathodes by reducing surface residual lithium[J]. Journal of Alloys and Compounds, 2022, 923: 166317. |
3 | 栗志展, 秦金磊, 梁嘉宁, 等. 高镍三元层状锂离子电池正极材料: 研究进展、挑战及改善策略[J]. 储能科学与技术, 2022, 11(9): 2900-2920. |
LI Z Z, QIN J L, LIANG J N, et al. High-nickel ternary layered cathode materials for lithium-ion batteries: Research progress, challenges and improvement strategies[J]. Energy Storage Science and Technology, 2022, 11(9): 2900-2920. | |
4 | 李金涛, 牟粤, 王静, 等. 高镍正极材料的稳定改性方法研究综述[J]. 储能科学与技术, 2023, 12(5): 1636-1654. |
LI J T, MU Y, WANG J, et al. Investigation of the structural evolution and interface behavior in cathode materials for Li-ion batteries[J]. Energy Storage Science and Technology, 2023, 12(5): 1636-1654. | |
5 | CHO D H, JO C H, CHO W, et al. Effect of residual lithium compounds on layer Ni-rich Li[Ni0.7Mn0.3]O2[J]. Journal of the Electrochemical Society, 2014, 161(6): A920-A926. |
6 | LIU H S, ZHANG Z R, GONG Z L, et al. Origin of deterioration for LiNiO2 cathode material during storage in air[J]. Electrochemical and Solid-State Letters, 2004, 7(7): A190. |
7 | KIM Y, KIM D, KANG S. Experimental and first-principles thermodynamic study of the formation and effects of vacancies in layered lithium nickel cobalt oxides[J]. Chemistry of Materials, 2011, 23(24): 5388-5397. |
8 | SEONG W M, KIM Y, MANTHIRAM A. Impact of residual lithium on the adoption of high-nickel layered oxide cathodes for lithium-ion batteries[J]. Chemistry of Materials, 2020, 32(22): 9479-9489. |
9 | HEISKANEN S K, KIM J, LUCHT B L. Generation and evolution of the solid electrolyte interphase of lithium-ion batteries[J]. Joule, 2019, 3(10): 2322-2333. |
10 | SUSAI F A, SCLAR H, MAITI S, et al. Stabilized behavior of LiNi0.85Co0.10Mn0.05O2 cathode materials induced by their treatment with SO2[J]. ACS Applied Energy Materials, 2020, 3(4): 3609-3618. |
11 | LEE K T, JEONG S, CHO J. Roles of surface chemistry on safety and electrochemistry in lithium ion batteries[J]. Accounts of Chemical Research, 2013, 46(5): 1161-1170. |
12 | ZHANG M J, HU X B, LI M F, et al. Lithium-ion batteries: Cooling induced surface reconstruction during synthesis of high-Ni layered oxides[J]. Advanced Energy Materials, 2019, 9(43): 1901915. |
13 | ZOU K Y, JIANG M Z, ZHAO Z X, et al. Mechanistic insights into suppressing microcracks by regulating grain size of precursor for high-performance Ni-rich cathodes[J]. Chemical Engineering Journal, 2023, 476: 146793. |
14 | FAENZA N V, BRUCE L, LEBENS-HIGGINS Z W, et al. Editors' choice—Growth of ambient induced surface impurity species on layered positive electrode materials and impact on electrochemical performance[J]. Journal of the Electrochemical Society, 2017, 164(14): A3727-A3741. |
15 | ZOU L F, HE Y, LIU Z Y, et al. Unlocking the passivation nature of the cathode-air interfacial reactions in lithium ion batteries[J]. Nature Communications, 2020, 11: 3204. |
16 | SHENG H, MENG X H, XIAO D D, et al. An air-stable high-nickel cathode with reinforced electrochemical performance enabled by convertible amorphous Li2CO3 modification[J]. Advanced Materials, 2022, 34(12): e2108947. |
17 | 杨慧平. 掺杂与包覆双重修饰锂离子电池高镍正极材料的研究[D]. 长沙: 长沙理工大学, 2019. |
YANG H P. Study on dual modification (doped and coated) of nickel-rich cathode materials for lithium ion batteries[D]. Changsha: Changsha University of Science & Technology, 2019. | |
18 | HAWLEY W B, LI J L. Beneficial rheological properties of lithium-ion battery cathode slurries from elevated mixing and coating temperatures[J]. Journal of Energy Storage, 2019, 26: 100994. |
19 | KEPPELER M, ROESSLER S, BRAUNWARTH W. Production research as key factor for successful establishment of battery production on the example of large-scale automotive cells containing nickel-rich LiNi0.8Mn0.1Co0.1O2 electrodes[J]. Energy Technology, 2020, 8(6): 202000183. |
20 | LIU F, HASHIM N A, LIU Y T, et al. Progress in the production and modification of PVDF membranes[J]. Journal of Membrane Science, 2011, 375(1/2): 1-27. |
21 | XIAO L, DAVENPORT D M, ORMSBEE L, et al. Polymerization and functionalization of membrane pores for water related applications[J]. Industrial & Engineering Chemistry Research, 2015, 54(16): 4174-4182. |
22 | BRESSER D, BUCHHOLZ D, MORETTI A, et al. Alternative binders for sustainable electrochemical energy storage-the transition to aqueous electrode processing and bio-derived polymers[J]. Energy & Environmental Science, 2018, 11(11): 3096-3127. |
23 | PARIMALAM B S, MACINTOSH A D, KADAM R, et al. Decomposition reactions of anode solid electrolyte interphase (SEI) components with LiPF6[J]. The Journal of Physical Chemistry C, 2017, 121(41): 22733-22738. |
24 | RENFREW S E, MCCLOSKEY B D. Residual lithium carbonate predominantly accounts for first cycle CO2 and CO outgassing of Li-stoichiometric and Li-rich layered transition-metal oxides[J]. Journal of the American Chemical Society, 2017, 139(49): 17853-17860. |
25 | SU Y F, LI L W, CHEN G, et al. Strategies of removing residual lithium compounds on the surface of Ni-rich cathode materials[J]. Chinese Journal of Chemistry, 2021, 39(1): 189-198. |
26 | BI Y J, WANG T, LIU M, et al. Stability of Li2CO3 in cathode of lithium ion battery and its influence on electrochemical performance[J]. RSC Advances, 2016, 6(23): 19233-19237. |
27 | TASAKI K, GOLDBERG A, LIAN J J, et al. Solubility of lithium salts formed on the lithium-ion battery negative electrode surface in organic solvents[J]. Journal of the Electrochemical Society, 2009, 156(12): A1019. |
28 | 袁绍辉, 曾子豪, 董煜, 等. 富镍三元层状正极材料表面残碱去除工艺: 研究进展、挑战及展望[J]. 中国有色金属学报, 2023, 33(5): 1554-1584. |
YUAN S H, ZENG Z H, DONG Y, et al. Removal process of residual alkali on surface of nickel-rich ternary layered cathode materials: Research progress, challenges and prospects[J]. The Chinese Journal of Nonferrous Metals, 2023, 33(5): 1554-1584. | |
29 | LIU W, OH P, LIU X E, et al. Nickel-rich layered lithium transition-metal oxide for high-energy lithium-ion batteries[J]. Angewandte Chemie International Edition, 2015, 54(15): 4440-4457. |
30 | BENEDETTI-PICHLER A A, CEFOLA M. Warder's method for the titration of carbonates[J]. Industrial & Engineering Chemistry Analytical Edition, 1939, 11(6): 327-332. |
31 | WANG C, TAN L, YI H L, et al. Unveiling the impact of residual Li conversion and cation ordering on electrochemical performance of Co-free Ni-rich cathodes[J]. Nano Research, 2022, 15(10): 9038-9046. |
32 | ZHOU C X, WANG P B, ZHANG B, et al. Formation and effect of residual lithium compounds on Li-rich cathode material Li1.35[Ni0.35Mn0.65]O2[J]. ACS Applied Materials & Interfaces, 2019, 11(12): 11518-11526. |
33 | MOSHTEV R, ZLATILOVA P, VASILEV S, et al. Synthesis, XRD characterization and electrochemical performance of overlithiated LiNiO2[J]. Journal of Power Sources, 1999, 81/82: 434-441. |
34 | PRITZL D, TEUFL T, FREIBERG A T S, et al. Editors' choice—Washing of nickel-rich cathode materials for lithium-ion batteries: Towards a mechanistic understanding[J]. Journal of the Electrochemical Society, 2019, 166(16): A4056-A4066. |
35 | SICKLINGER J, METZGER M, BEYER H, et al. Ambient storage derived surface contamination of NCM811 and NCM111: Performance implications and mitigation strategies[J]. Journal of the Electrochemical Society, 2019, 166(12): A2322-A2335. |
36 | KIM Y, PARK H, WARNER J H, et al. Unraveling the intricacies of residual lithium in high-Ni cathodes for lithium-ion batteries[J]. ACS Energy Letters, 2021, 6(3): 941-948. |
37 | XIA Y, ZHENG J M, WANG C M, et al. Designing principle for Ni-rich cathode materials with high energy density for practical applications[J]. Nano Energy, 2018, 49: 434-452. |
38 | KIM H, KIM M G, JEONG H Y, et al. A new coating method for alleviating surface degradation of LiNi0.6Co0.2Mn0.2O2 cathode material: Nanoscale surface treatment of primary particles[J]. Nano Letters, 2015, 15(3): 2111-2119. |
39 | LEE M J, NOH M, PARK M H, et al. The role of nanoscale-range vanadium treatment in LiNi0.8Co0.15Al0.05O2 cathode materials for Li-ion batteries at elevated temperatures[J]. Journal of Materials Chemistry A, 2015, 3(25): 13453-13460. |
40 | LIAO J Y, MANTHIRAM A. Surface-modified concentration-gradient Ni-rich layered oxide cathodes for high-energy lithium-ion batteries[J]. Journal of Power Sources, 2015, 282: 429-436. |
41 | MU L Q, YANG Z Z, TAO L, et al. The sensitive surface chemistry of Co-free, Ni-rich layered oxides: Identifying experimental conditions that influence characterization results[J]. Journal of Materials Chemistry A, 2020, 8(34): 17487-17497. |
42 | ZHANG H W, ZHANG X Y, ZENG T Y, et al. Conversion of residual lithium into fast ionic conductor coating to achieve one-step double modification strategy in LiNi0.8Co0.15Al0.05O2[J]. Journal of Alloys and Compounds, 2023, 931: 167638. |
43 | XU W L, DANG R B, ZHOU L, et al. Conversion of surface residual alkali to solid electrolyte to enable Na-ion full cells with robust interfaces[J]. Advanced Materials, 2023, 35(42): e2301314. |
44 | YANG X R, TANG S J, ZHENG C X, et al. From contaminated to highly lithiated interfaces: A versatile modification strategy for garnet solid electrolytes[J]. Advanced Functional Materials, 2023, 33(3): 2209120. |
45 | WANG W Z, WU L Y, LI Z W, et al. In situ tuning residual lithium compounds and constructing TiO2 coating for surface modification of a nickel-rich cathode toward high-energy lithium-ion batteries[J]. ACS Applied Energy Materials, 2020, 3(12): 12423-12432. |
46 | XIE Q A, LI W D, DOLOCAN A, et al. Insights into boron-based polyanion-tuned high-nickel cathodes for high-energy-density lithium-ion batteries[J]. Chemistry of Materials, 2019, 31(21): 8886-8897. |
47 | RYU H H, LIM H W, KANG G C, et al. Long-lasting Ni-rich NCMA cathodes via simultaneous microstructural refinement and surface modification[J]. ACS Energy Letters, 2023, 8(3): 1354-1361. |
48 | YIM T, JANG S H, HAN Y K. Triphenyl borate as a bi-functional additive to improve surface stability of Ni-rich cathode material[J]. Journal of Power Sources, 2017, 372: 24-30. |
49 | LUO Z Y, HU G R, WANG W G, et al. Enhancing the electrochemical performance of Co-less Ni-rich LiNi0.925Co0.03Mn0.045O2 cathode material via Co-modification with Li2B4O7 coating and B3+ doping[J]. Journal of Power Sources, 2022, 548: 232092. |
50 | CHEN A Q, WANG K, LI J J, et al. The formation, detriment and solution of residual lithium compounds on Ni-rich layered oxides in lithium-ion batteries[J]. Frontiers in Energy Research, 2020, 8: 593009. |
51 | LI Y, SHI H C, HE J J, et al. Enhanced cyclability and reversibility of nickel-rich cathode for lithium-ion batteries via LiH2PO4 assisted saturated Li2CO3 washing[J]. Applied Surface Science, 2022, 593: 153409. |
52 | 邵佳伟. 高镍三元锂电池正极材料水洗后干燥过程及其装备研究[D]. 常州: 常州大学, 2022. |
SHAO J W. Development of drying process equipment for high nickel ternary lithium ion battery cathode materials after washing[D]. Changzhou: Changzhou University, 2022. | |
53 | WONTAE L, SANGYOON L, EUNKANG L, et al. Destabilization of the surface structure of Ni-rich layered materials by water-washing process[J]. Energy Storage Materials, 2022, 44: 441-451. |
54 | ZHENG X B, LI X H, WANG Z X, et al. Investigation and improvement on the electrochemical performance and storage characteristics of LiNiO2-based materials for lithium ion battery[J]. Electrochimica Acta, 2016, 191: 832-840. |
55 | LIU W M, QIN M L, XU L, et al. Washing effect on properties of LiNi0.8Co0.15Al0.05O2 cathode material by ethanol solvent[J]. Transactions of Nonferrous Metals Society of China, 2018, 28(8): 1626-1631. |
56 | CHEN J Y, SU B T, FAN J, et al. A low-temperature coating method with H3BO3 for enhanced electrochemical performance of Ni-rich LiNi0.82Co0.12Mn0.06O2 cathode[J]. Electrochimica Acta, 2022, 422: 140564. |
57 | WU F, DONG J Y, CHEN L, et al. Removing the intrinsic NiO phase and residual lithium for high-performance nickel-rich materials[J]. Energy Material Advances, 2023, 4: 0007. |
58 | NEUDECK S, STRAUSS F, GARCIA G, et al. Room temperature, liquid-phase Al2O3 surface coating approach for Ni-rich layered oxide cathode material[J]. Chemical Communications, 2019, 55(15): 2174-2177. |
59 | WATANABE T, YOKOKAWA T, YAMADA M, et al. Surface coating of a LiNixCoyAl1- x- yO2 (x>0.85) cathode with Li3PO4 for applying a water-based hybrid polymer binder during Li-ion battery preparation[J]. RSC Advances, 2021, 11(59): 37150-37161. |
60 | ZHOU P F, ZHANG Z, MENG H J, et al. SiO2-coated LiNi0.915Co0.075Al0.01O2 cathode material for rechargeable Li-ion batteries[J]. Nanoscale, 2016, 8(46): 19263-19269. |
61 | TAO T, CHEN C, YAO Y B, et al. Enhanced electrochemical performance of ZrO2 modified LiNi0.6Co0.2Mn0.2O2 cathode material for lithium ion batteries[J]. Ceramics International, 2017, 43(17): 15173-15178. |
62 | CHEN Y P, ZHANG Y, CHEN B J, et al. An approach to application for LiNi0.6Co0.2Mn0.2O2 cathode material at high cutoff voltage by TiO2 coating[J]. Journal of Power Sources, 2014, 256: 20-27. |
63 | LI X X, SHI H B, WANG B, et al. Controllable TiO2 coating on the nickel-rich layered cathode through TiCl4 hydrolysis via fluidized bed chemical vapor deposition[J]. RSC Advances, 2019, 9(31): 17941-17949. |
64 | LIU X Z, LI H Q, YOO E, et al. Fabrication of FePO4 layer coated LiNi1/3Co1/3Mn1/3O2: Towards high-performance cathode materials for lithium ion batteries[J]. Electrochimica Acta, 2012, 83: 253-258. |
65 | XIONG X H, WANG Z X, YIN X, et al. A modified LiF coating process to enhance the electrochemical performance characteristics of LiNi0.8Co0.1Mn0.1O2 cathode materials[J]. Materials Letters, 2013, 110: 4-9. |
66 | KIM H B, PARK B C, MYUNG S T, et al. Electrochemical and thermal characterization of AlF3-coated Li[Ni0.8Co0.15Al0.05]O2 cathode in lithium-ion cells[J]. Journal of Power Sources, 2008, 179(1): 347-350. |
67 | LEE S H, YOON C S, AMINE K, et al. Improvement of long-term cycling performance of Li[Ni0.8Co0.15Al0.05]O2 by AlF3 coating[J]. Journal of Power Sources, 2013, 234: 201-207. |
68 | LI J W, WANG J J, LU X H, et al. Enhancing high-potential stability of Ni-rich LiNi0.8Co0.1Mn0.1O2 cathode with PrF3 coating[J]. Ceramics International, 2021, 47(5): 6341-6351. |
69 | QIU H L, JIN D, WANG C Z, et al. Design of Li2FeSiO4 cathode material for enhanced lithium-ion storage performance[J]. Chemical Engineering Journal, 2020, 379: 122329. |
70 | MENG K, WANG Z X, GUO H J, et al. Improving the cycling performance of LiNi0.8Co0.1Mn0.1O2 by surface coating with Li2TiO3[J]. Electrochimica Acta, 2016, 211: 822-831. |
71 | KIM J M, XU Y B, ENGELHARD M H, et al. Facile dual-protection layer and advanced electrolyte enhancing performances of cobalt-free/nickel-rich cathodes in lithium-ion batteries[J]. ACS Applied Materials & Interfaces, 2022, 14(15): 17405-17414. |
72 | WU F, DONG J Y, CHEN L, et al. High-voltage and high-safety nickel-rich layered cathode enabled by a self-reconstructive cathode/electrolyte interphase layer[J]. Energy Storage Materials, 2021, 41: 495-504. |
73 | YANG Z, LI Z M, HUANG Y X, et al. Artificial interface stabilized LiNi0.80Co0.15Al0.05O2@Polysiloxane cathode for stable cycling lithium-ion batteries[J]. Journal of Power Sources, 2020, 471: 228480. |
74 | YAO L, LIANG F Q, JIN J, et al. Improved electrochemical property of Ni-rich LiNi0.6Co0.2Mn0.2O2 cathode via in situ ZrO2 coating for high energy density lithium ion batteries[J]. Chemical Engineering Journal, 2020, 389: 124403. |
75 | QU X Y, YU Z L, RUAN D S, et al. Enhanced electrochemical performance of Ni-rich cathode materials with Li1.3Al0.3Ti1.7(PO4)3 coating[J]. ACS Sustainable Chemistry & Engineering, 2020, 8(15): 5819-5830. |
76 | LIU X P, CHEN Q Q, LI Y W, et al. Synergistic modification of magnesium fluoride/sodium for improving the electrochemical performances of high-nickel ternary (NCM811) cathode materials[J]. Journal of the Electrochemical Society, 2019, 166(14): A3480-A3486. |
77 | ZHAO E Y, CHEN M M, HU Z B, et al. Improved cycle stability of high-capacity Ni-rich LiNi0.8Mn0.1Co0.1O2 at high cut-off voltage by Li2SiO3 coating[J]. Journal of Power Sources, 2017, 343: 345-353. |
78 | MA Y, LV F, WANG Z Q, et al. Open-channel[011]facet CeO2 with a shorter pathway of Li+ migration as a modification material for LiNi0.8Co0.1Mn0.1O2 toward high-rate lithium-ion batteries[J]. ACS Sustainable Chemistry & Engineering, 2020, 8(23): 8795-8802. |
79 | SHEN Y B, WU Y Q, ZHANG D Y, et al. Stabilization of high-voltage layered oxide cathode by utilizing residual lithium to form NASICON-type nanoscale functional coating[J]. Nano Research, 2023, 16(4): 5973-5982. |
80 | LI L J, FU L Z, LI M, et al. B-doped and La4NiLiO8-coated Ni-rich cathode with enhanced structural and interfacial stability for lithium-ion batteries[J]. Journal of Energy Chemistry, 2022, 71: 588-594. |
81 | ZHU J, LI Y J, XUE L L, et al. Enhanced electrochemical performance of Li3PO4 modified Li[Ni0.8Co0.1Mn0.1]O2 cathode material via lithium-reactive coating[J]. Journal of Alloys and Compounds, 2019, 773: 112-120. |
82 | LV Y, HUANG S F, LU S R, et al. Engineering of cobalt-free Ni-rich cathode material by dual-element modification to enable 4.5 V-class high-energy-density lithium-ion batteries[J]. Chemical Engineering Journal, 2023, 455: 140652. |
83 | ZHANG Y X, ZHAO Y, HU W, et al. Microstructure and surface engineering through indium modification on Ni-rich layered cathode materials for enhanced electrochemical performance of lithium-ion batteries[J]. Journal of Alloys and Compounds, 2023, 934: 167862. |
84 | FAN M, CHANG X, GUO Y J, et al. Increased residual lithium compounds guided design for green recycling of spent lithium-ion cathodes[J]. Energy & Environmental Science, 2021, 14(3): 1461-1468. |
85 | HE K, ZHANG Z Y, ALAI L G, et al. A green process for exfoliating electrode materials and simultaneously extracting electrolyte from spent lithium-ion batteries[J]. Journal of Hazardous Materials, 2019, 375: 43-51. |
86 | SHIM J H, JUNG M H, YANG M J, et al. Fine-tuned synthesis for reducing residual lithium in Ni-rich cathode materials for lithium-ion batteries[J]. ACS Applied Energy Materials, 2023, 6(11): 5952-5958. |
[1] | 袁玉和, 刘亮, 张洪涛, 衣启正, 张永鹏, 郭延哲, 苑文畅, 李希超. 锂离子电容器自放电检测方法研究[J]. 储能科学与技术, 2022, 11(2): 690-696. |
[2] | 周军华, 褚赓, 陆浩, 刘柏男, 罗飞, 郑杰允, 陈仕谋, 郭玉国, 李泓. 锂离子电池负极材料标准解读[J]. 储能科学与技术, 2019, 8(1): 215-223. |
[3] | 陈仕谋, 秦虎, 刘敏. 锂离子电池电解液标准解读[J]. 储能科学与技术, 2018, 7(6): 1253-1260. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||