[1] |
FU T W, WANG W Z, FANG G Y. Thermal properties and applications of form-stable phase change materials for thermal energy storage and thermal management: A review[J]. Energy Storage, 2024, 6(1): e533. DOI: 10.1002/est2.533.
|
[2] |
KHAN J, SINGH P. Review on phase change materials for spacecraft avionics thermal management[J]. Journal of Energy Storage, 2024, 87: 111369. DOI: 10.1016/j.est.2024.111369.
|
[3] |
杨小虎, 陈凯, 柯汉兵, 等. 变加速度对低熔点金属相变传热特性的影响[J]. 华中科技大学学报(自然科学版), 2022, 50(12): 143-148. DOI: 10.13245/j.hust.221218.
|
|
YANG X H, CHEN K, KE H B, et al. Investigation on influence of variant acceleration on phase change heat transfer characteristics of low melting point metal[J]. Journal of Huazhong University of Science and Technology (Natural Science Edition), 2022, 50(12): 143-148. DOI: 10.13245/j.hust.221218.
|
[4] |
WANG J L, LI T, XU Y. Thermal characteristics of latent heat sinks based on low melting point metal and topologically optimized fins under lateral hypergravity[J]. Applied Thermal Engineering, 2023, 228: 120569. DOI: 10.1016/j.applthermaleng.2023.120569.
|
[5] |
XU Y, WANG J L, YAN Z H. Experimental investigation on melting heat transfer characteristics of a phase change material under hypergravity[J]. International Journal of Heat and Mass Transfer, 2021, 181: 122004. DOI: 10.1016/j.ijheatmasstransfer.2021.122004.
|
[6] |
LIU H, ZHANG N, ZHANG Z L, et al. Experimental investigation of the effect of external forces on convection-driven melting of phase change material in a rectangular enclosure[J]. International Journal of Heat and Mass Transfer, 2022, 199: 123489. DOI: 10.1016/j.ijheatmasstransfer.2022.123489.
|
[7] |
SONG Z L, WANG J, SHAO Z Y, et al. Performance optimization of thermal storage device based on bionic tree-shaped fins and eccentric arrangement[J]. International Communications in Heat and Mass Transfer, 2024, 157: 107774. DOI: 10.1016/j.icheatmasstransfer.2024.107774.
|
[8] |
罗意彬, 段文超, 严景好, 等. 双翅片矩形相变储能单元蓄热性能实验研究[J]. 储能科学与技术, 2024, 13(2): 405-415. DOI: 10.19799/j.cnki.2095-4239.2023.0627.
|
|
LUO Y B, DUAN W C, YAN J H, et al. Experimental study on heat storage performance of a double-fin rectangular phase change energy storage unit[J]. Energy Storage Science and Technology, 2024, 13(2): 405-415. DOI: 10.19799/j.cnki.2095-4239.2023.0627.
|
[9] |
CHOURE B K, ALAM T, KUMAR R. Optimization of heat transfer in PCM based triple tube heat exchanger using multitudinous fins and eccentric tube[J]. Journal of Energy Storage, 2024, 102: 113981. DOI: 10.1016/j.est.2024.113981.
|
[10] |
SHAILESH K, NARESH Y, BANERJEE J. Heat transfer performance of a novel PCM based heat sink coupled with heat pipe: An experimental study[J]. Applied Thermal Engineering, 2023, 229: 120552. DOI: 10.1016/j.applthermaleng.2023.120552.
|
[11] |
HEMMATIAN A, KARGARSHARIFABAD H, ABEDINI ESFAHLANI A, et al. Improving solar still performance with heat pipe/pulsating heat pipe evacuated tube solar collectors and PCM: An experimental and environmental analysis[J]. Solar Energy, 2024, 269: 112371. DOI: 10.1016/j.solener.2024.112371.
|
[12] |
LI B, MAO Z Y, SONG B W, et al. Enhancement of phase change materials by nanoparticles to improve battery thermal management for autonomous underwater vehicles[J]. International Communications in Heat and Mass Transfer, 2022, 137: 106301. DOI: 10.1016/j.icheatmasstransfer.2022.106301.
|
[13] |
HASHEM ZADEH S M, MEHRYAN S A M, GHALAMBAZ M, et al. Hybrid thermal performance enhancement of a circular latent heat storage system by utilizing partially filled copper foam and Cu/GO nano-additives[J]. Energy, 2020, 213: 118761. DOI: 10.1016/j.energy.2020.118761.
|
[14] |
AFAYNOU I, FARAJI H, CHOUKAIRY K, et al. Heat transfer improvement of phase change materials by metal foams and nanoparticles for efficient electronic thermal management: A comprehensive study[J]. International Journal of Heat and Mass Transfer, 2024, 227: 125534. DOI: 10.1016/j.ijheatmasstransfer. 2024.125534.
|
[15] |
ÖZTÜRK B, GÖLBAŞı Z, YAZıCı M Y. Experimental investigation of the melting performance of a low porosity metal foam/PCM composite heat sink in various configurations[J]. International Communications in Heat and Mass Transfer, 2023, 149: 107169. DOI: 10.1016/j.icheatmasstransfer.2023.107169.
|
[16] |
代建龙, 李果, 曹一通, 等. 多孔金属泡沫强化石蜡相变蓄热性能[J]. 储能科学与技术, 2024, 13(11): 3764-3771. DOI: 10.19799/j.cnki. 2095-4239.2024.0449.
|
|
DAI J L, LI G, CAO Y T, et al. Enhancing phase change heat storage performance of paraffin using porous metal foam[J]. Energy Storage Science and Technology, 2024, 13(11): 3764-3771. DOI: 10.19799/j.cnki.2095-4239.2024.0449.
|
[17] |
AFAYNOU I, FARAJI H, CHOUKAIRY K, et al. Effectiveness of a PCM-based heat sink with partially filled metal foam for thermal management of electronics[J]. International Journal of Heat and Mass Transfer, 2024, 235: 126196. DOI: 10.1016/j.ijheatmasstransfer. 2024.126196.
|
[18] |
SHI J, DU H Y, CHEN Z Q, et al. Review of phase change heat transfer enhancement by metal foam[J]. Applied Thermal Engineering, 2023, 219: 119427. DOI: 10.1016/j.applthermaleng. 2022.119427.
|
[19] |
SHANG B F, HU J Y, HU R, et al. Modularized thermal storage unit of metal foam/paraffin composite[J]. International Journal of Heat and Mass Transfer, 2018, 125: 596-603. DOI: 10.1016/j.ijheatmasstransfer.2018.04.117.
|
[20] |
CUI H T. Experimental investigation on the heat charging process by paraffin filled with high porosity copper foam[J]. Applied Thermal Engineering, 2012, 39: 26-28. DOI: 10.1016/j.applthermaleng.2012.01.037.
|
[21] |
杨佳霖, 杜小泽, 杨立军, 等. 泡沫金属强化石蜡相变蓄热过程可视化实验[J]. 化工学报, 2015, 66(2): 497-503. DOI: 10.11949/j.issn. 0438-1157.20141182.
|
|
YANG J L, DU X Z, YANG L J, et al. Visualized experiment on dynamic thermal behavior of phase change material in metal foam[J]. CIESC Journal, 2015, 66(2): 497-503. DOI: 10.11949/j.issn.0438-1157.20141182.
|
[22] |
MESALHY O, LAFDI K, ELGAFY A, et al. Numerical study for enhancing the thermal conductivity of phase change material (PCM) storage using high thermal conductivity porous matrix[J]. Energy Conversion and Management, 2005, 46(6): 847-867. DOI: 10.1016/j.enconman.2004.06.010.
|
[23] |
CHEN Z Q, GAO D Y, SHI J. Experimental and numerical study on melting of phase change materials in metal foams at pore scale[J]. International Journal of Heat and Mass Transfer, 2014, 72: 646-655. DOI: 10.1016/j.ijheatmasstransfer.2014.01.003.
|
[24] |
KAMKARI B, SHOKOUHMAND H, BRUNO F. Experimental investigation of the effect of inclination angle on convection-driven melting of phase change material in a rectangular enclosure[J]. International Journal of Heat and Mass Transfer, 2014, 72: 186-200. DOI: 10.1016/j.ijheatmasstransfer.2014.01.014.
|
[25] |
KAMKARI B, GROULX D. Experimental investigation of melting behaviour of phase change material in finned rectangular enclosures under different inclination angles[J]. Experimental Thermal and Fluid Science, 2018, 97: 94-108. DOI: 10.1016/j.expthermflusci.2018.04.007.
|
[26] |
ZOU J L, ZUO Y G, LIU Z J, et al. Employing perforated copper foam to improve the thermal performance of latent thermal energy storage units[J]. Journal of Energy Storage, 2023, 72: 108616. DOI: 10.1016/j.est.2023.108616.
|
[27] |
YANG X H, WANG X Y, LIU Z, et al. Thermal performance assessment of a thermal energy storage tank: Effect of aspect ratio and tilted angle[J]. International Journal of Energy Research, 2021, 45(7): 11157-11178. DOI: 10.1002/er.6598.
|
[28] |
钮冬科, 金晓怡, 张向伟, 等. 基于Flotherm的电子电路热仿真分析与研究[J]. 现代电子技术, 2015, 38(6): 16-19, 24. DOI: 10.16652/j.issn.1004-373x.2015.06.016.
|
|
NIU D K, JIN X Y, ZHANG X W, et al. Thermal simulation analysis for electronic circuit on flotherm[J]. Modern Electronics Technique, 2015, 38(6): 16-19, 24. DOI: 10.16652/j.issn.1004-373x.2015.06.016.
|