[1] |
李文俊, 徐航宇, 杨琪, 等. 高能量密度锂电池开发策略[J]. 储能科学与技术, 2020, 9(2): 448-478. DOI: 10.19799/j.cnki.2095-4239. 2020-0050.
|
|
LI W J, XU H Y, YANG Q, et al. Development of strategies for high-energy-density lithium batteries[J]. Energy Storage Science and Technology, 2020, 9(2): 448-478. DOI: 10.19799/j.cnki.2095-4239.2020-0050.
|
[2] |
ARMAND M, AXMANN P, BRESSER D, et al. Lithium-ion batteries—Current state of the art and anticipated developments[J]. Journal of Power Sources, 2020, 479: 228708. DOI: 10.1016/j.jpowsour.2020.228708.
|
[3] |
MIAO Y P, LIU L L, ZHANG Y P, et al. An overview of global power lithium-ion batteries and associated critical metal recycling[J]. Journal of Hazardous Materials, 2022, 425: 127900. DOI: 10.1016/j.jhazmat.2021.127900.
|
[4] |
杜进桥, 田杰, 李艳, 等. 锂离子电池石墨负极失效及其先进表征方法[J]. 储能科学与技术, 2024, 13(10): 3467-3479. DOI: 10.19799/j.cnki.2095-4239.2024.0284.
|
|
DU J Q, TIAN J, LI Y, et al. Failure of graphite negative electrode in lithium-ion batteries and advanced characterization methods[J]. Energy Storage Science and Technology, 2024, 13(10): 3467-3479. DOI: 10.19799/j.cnki.2095-4239.2024.0284.
|
[5] |
LI J W, WANG T D, WANG Y J, et al. Solid-liquid-solid growth of doped silicon nanowires for high-performance lithium-ion battery anode[J]. Nano Energy, 2025, 133: 110455. DOI: 10.1016/j.nanoen.2024.110455.
|
[6] |
尹坚, 董季玲, 丁皓, 等. 锂离子电池过渡金属氧化物负极材料研究进展[J]. 储能科学与技术, 2021, 10(3): 995-1001. DOI: 10.19799/j.cnki.2095-4239.2020.0412.
|
|
YIN J, DONG J L, DING H, et al. Research progress of transition metal oxide anode materials for lithium-ion batteries[J]. Energy Storage Science and Technology, 2021, 10(3): 995-1001. DOI: 10.19799/j.cnki.2095-4239.2020.0412.
|
[7] |
LI X W, WANG J H, YANG L F, et al. Element screening engineering for high-entropy alloy anodes: Achieving fast and robust Li-storage with optimal working potential[J]. Advanced Materials, 2024, 36(48): 2409278. DOI: 10.1002/adma.202409278.
|
[8] |
PONNURU H, MARRIAM I, RAMBUKWELLA I, et al. Recent advances in liquid metals for rechargeable batteries[J]. Advanced Functional Materials, 2024, 34(31): 2309706. DOI: 10.1002/adfm.202309706.
|
[9] |
陈玉, 夏鑫. 可充电电池的镓基液态金属负极材料研究进展[J]. 电源技术, 2021, 45(1): 132-135.
|
|
CHEN Y, XIA X. Research progress of gallium-based liquid metal anode materials for rechargeable batteries[J]. Chinese Journal of Power Sources, 2021, 45(1): 132-135.
|
[10] |
张剑峰, 陈玉, 刘航, 等. 碳基GaSn合金负极材料的制备及其电化学性能[J]. 化工新型材料, 2024, 52(10): 90-95. DOI: 10.19817/j.cnki.issn1006-3536.2024.10.047.
|
|
ZHANG J F, CHEN Y, LIU H, et al. Preparation and electrochemical performance analysis of carbon-based GaSn alloy anode materials[J]. New Chemical Materials, 2024, 52(10): 90-95. DOI: 10.19817/j.cnki.issn1006-3536.2024.10.047.
|
[11] |
张春小, 崔丹丹, 杜轶, 等. 镓基液态金属的结构与物性[J]. 自然杂志, 2023, 45(5): 340-354. DOI: 10.3969/j.issn.0253-9608.2023.05.003.
|
|
ZHANG C X, CUI D D, DU Y, et al. Structure and physical properties of gallium-based liquid metal[J]. Chinese Journal of Nature, 2023, 45(5): 340-354. DOI: 10.3969/j.issn.0253-9608. 2023.05.003.
|
[12] |
SONG M J, WANG Y, YU B, et al. A high-performance room-temperature magnesium ion battery with self-healing liquid alloy anode mediated with a bifunctional intermetallic compound[J]. Chemical Engineering Journal, 2022, 450: 138176. DOI: 10.1016/j.cej.2022.138176.
|
[13] |
GU J N, TAO Y, CHEN H, et al. Stress-release functional liquid metal-MXene layers toward dendrite-free zinc metal anodes[J]. Advanced Energy Materials, 2022, 12(16): 2200115. DOI: 10. 1002/aenm.202200115.
|
[14] |
FU H, LIU G C, XIONG L Y, et al. A shape-variable, low-temperature liquid metal-conductive polymer aqueous secondary battery[J]. Advanced Functional Materials, 2021, 31(50): 2107062. DOI: 10.1002/adfm.202107062.
|
[15] |
WEI C L, TAN L W, TAO Y, et al. Interfacial passivation by room-temperature liquid metal enabling stable 5 V-class lithium-metal batteries in commercial carbonate-based electrolyte[J]. Energy Storage Materials, 2021, 34: 12-21. DOI: 10.1016/j.ensm.2020. 09.006.
|
[16] |
尹富强, 赵玉辰, 李赵春. 镓基液态金属应用的研究进展[J]. 现代化工, 2022, 42(5): 24-29. DOI: 10.16606/j.cnki.issn0253-4320.2022.05.005.
|
|
YIN F Q, ZHAO Y C, LI Z C. Advances on application of gallium-based liquid metal[J]. Modern Chemical Industry, 2022, 42(5): 24-29. DOI: 10.16606/j.cnki.issn0253-4320.2022.05.005.
|
[17] |
WEI C L, FEI H F, TIAN Y, et al. Room-temperature liquid metal confined in MXene paper as a flexible, freestanding, and binder-free anode for next-generation lithium-ion batteries[J]. Small, 2019, 15(46): 1903214. DOI: 10.1002/smll.201903214.
|
[18] |
ZHANG H N, CHEN P Y, XIA H, et al. An integrated self-healing anode assembled via dynamic encapsulation of liquid metal with a 3D Ti3C2Tx network for enhanced lithium storage[J]. Energy & Environmental Science, 2022, 15(12): 5240-5250. DOI: 10.1039/D2EE02147A.
|
[19] |
HUANG C H, GUO B Y, WANG X D, et al. Alkali-ion batteries by carbon encapsulation of liquid metal anode[J]. Advanced Materials, 2024, 36(4): 2309732. DOI: 10.1002/adma.202309732.
|
[20] |
LIN X R, CHEN A, YANG C Y, et al. A room-temperature self-healing liquid metal-infilled microcapsule driven by coaxial flow focusing for high-performance lithium-ion battery anode[J]. Small, 2024, 20(16): 2307071. DOI: 10.1002/smll.202307071.
|
[21] |
WANG K Z, HU J, CHEN T Y, et al. CuGa2 transition phase anchored liquid GaSn achieves high-performance liquid metal battery cathode[J]. Journal of Energy Storage, 2024, 89: 111879. DOI: 10.1016/j.est.2024.111879.
|
[22] |
YANG J H, ZHOU W, HU J M, et al. Universal renaissance strategy of metal fluoride in secondary ion batteries enabled by liquid metal gallium[J]. Advanced Materials, 2023, 35(28): 2301442. DOI: 10.1002/adma.202301442.
|
[23] |
LIN X R, CHEN A, YANG C Y, et al. A room-temperature self-healing liquid metal-infilled microcapsule driven by coaxial flow focusing for high-performance lithium-ion battery anode[J]. Small, 2024, 20(16): 2307071. DOI: 10.1002/smll.202307071.
|
[24] |
WANG Q Y, ZHU M, CHEN G R, et al. High-performance microsized Si anodes for lithium-ion batteries: Insights into the polymer configuration conversion mechanism[J]. Advanced Materials, 2022, 34(16): 2109658. DOI: 10.1002/adma.202109658.
|
[25] |
HAN B, ZOU Y C, KE R H, et al. Stable lithium metal anodes with a GaOx artificial solid electrolyte interphase in damp air[J]. ACS Applied Materials & Interfaces, 2021, 13(18): 21467-21473. DOI: 10.1021/acsami.1c04196.
|
[26] |
HAN B, XU D W, CHI S S, et al. 500 Wh/kg class Li metal battery enabled by a self-organized core-shell composite anode[J]. Advanced Materials, 2020, 32(42): 2004793. DOI: 10.1002/adma.202004793.
|
[27] |
NI J F, ZHU X C, YUAN Y F, et al. Rooting binder-free tin nanoarrays into copper substrate via tin-copper alloying for robust energy storage[J]. Nature Communications, 2020, 11: 1212. DOI: 10.1038/s41467-020-15045-x.
|