• XXXX •
张新新1, 岑官骏1, 乔荣涵1, 郝峻丰1, 孙蔷馥1, 郑博文1, 谷宇皓1, 田孟羽2, 金周2, 詹元杰2, 闫勇2, 贲留斌1,2, 俞海龙1, 刘燕燕1, 周洪3, 黄学杰1,2
Xinxin ZHANG1, Guanjun CEN1, Ronghan QIAO1, Junfeng HAO1, Qiangfu SUN1, Bowen ZHENG1, Yuhao Gu1, Mengyu TIAN2, Zhou JIN2, Yuanjie ZHAN2, Yong YAN2, Liubin BEN1,2, Hailong YU1, Yanyan LIU1, Hong ZHOU3, Xueji HUANG1,2
摘要:
该文是一篇近两个月的锂电池文献评述,以“lithium”和“batter*”为关键词检索了 Web of Science 从 2025年6月 1日至 2025年7月 31日上线的锂电池研究论文,共有7666篇。首选采用BERTopic主题模型对其摘要文本进行分析,构建锂电池论文的研究主题图,再选择其中100篇加以评论。正极材料的研究集中于高镍层状材料和其他新型材料的掺杂改性、表面包覆、结构设计等。负极材料的研究重点包括硅基负极的结构设计、金属锂负极的界面和体相结构设计。固态电解质的研究包括对聚合物、氧化物、硫化物和卤化物及其复合固态电解质的结构设计以及相关性能研究。其他电解液和添加剂的研究则主要包括不同电解质和溶剂对各类电池材料体系适配的研究,以及对新的功能性添加剂的探索。对固态电池,正极材料的表面包覆、合成方法和复合材料的优化、锂金属负极的界面构筑、其他种类负极的合成有多篇文献报道。此外,锂硫电池和锂空电池也备受关注。电极中的锂离子输运和失效机制、锂沉积形貌和电解质锂扩散路径、全电池热失控分析,固态电解质与锂界面孔洞和枝晶生长机制的理论模拟以及高通量计算和大数据模型在锂电池中应用论文也有多篇。
中图分类号:
张新新, 岑官骏, 乔荣涵, 郝峻丰, 孙蔷馥, 郑博文, 谷宇皓, 田孟羽, 金周, 詹元杰, 闫勇, 贲留斌, 俞海龙, 刘燕燕, 周洪, 黄学杰. 锂电池百篇论文点评(2025.6.1—2025.7.31)[J]. 储能科学与技术, doi: 10.19799/j.cnki.2095-4239.2025.0758.
Xinxin ZHANG, Guanjun CEN, Ronghan QIAO, Junfeng HAO, Qiangfu SUN, Bowen ZHENG, Yuhao Gu, Mengyu TIAN, Zhou JIN, Yuanjie ZHAN, Yong YAN, Liubin BEN, Hailong YU, Yanyan LIU, Hong ZHOU, Xueji HUANG. Reviews of selected 100 recent papers for lithium batteries (June. 1, 2025 to July. 31, 2025)[J]. Energy Storage Science and Technology, doi: 10.19799/j.cnki.2095-4239.2025.0758.
[1] | LIANG Y, XUE H, ZHAN M, et al. Stationary oxygen vacancy construction toward a superior-performance ultrahigh nickel single-crystal cathode[J]. ACS nano, 2025, doi: 10.1021/acsnano.5c05412. |
[2] | WANG B, LI K, XU G, et al. Mechanically and chemically co-robust ni-rich cathodes with ultrahigh capacity and prolonged cycle life[J]. Angewandte Chemie-International Edition, 2025, doi: 10.1002/anie.202502725.. |
[3] | LIM J, SONNI M, DANIELS L M, et al. High rate capability and cycling stability in multi-domain nanocomposite LiNi1-xTi3x/4O2 positive electrodes[J]. Advanced Materials, 2025, doi: 10.1002/adma.202417899. |
[4] | ZHENG C, WANG Y, MAO H, et al. Superexchange interaction regulates ni/mn spin states triggering Ni-t2g/O-2p reductive coupling enabling stable lithium-rich cathode[J]. Nature Communications, 2025, doi: 10.1038/s41467-025-59159-6. |
[5] | PATHERIA E S, GUZMAN P, SOLDNER L S, et al. High-energy density Li-ion battery cathode using only industrial elements[J]. Journal of the American Chemical Society, 2025, 147(11): 9786-9799. |
[6] | WANG Y, SUN T, BI L, et al. Realizing ultra-fast ionic transport in the cost-effective chlorospinel cathode for all-solid-state lithium-ion batteries[J]. Electrochimica Acta, 2025, doi: 10.1016/j.electacta.2025.146521. |
[7] | ZHANG K, YANG T, CHEN T, et al. An amorphous Li-V-O-F cathode with tetrahedral coordination and O-O formal redox at low voltage[J]. Nature Materials, 2025, doi: 10.1038/s41563-025-02293-9. |
[8] | HE J, DENG Y, HAN J, et al. Sieving pore design enables stable and fast alloying chemistry of silicon negative electrodes in Li-ion batteries[J]. Nature Communications, 2025, doi: 10.1038/s41467-025-60191-9. |
[9] | KIM C, MUN S, PARK J, et al. Sulfur-based hybrid multilayers on Li metal anodes with excellent air stability for ultralong-life and high-performance batteries[J]. Journal of Materials Chemistry A, 2025, 13(5): 3882-3893. |
[10] | WANG X, ZHANG B, CHEN Z, et al. Achieving a higher lithium density in anodes surpassing that of pure metallic lithium for high-energy-density batteries[J]. Energy & Environmental Science, 2025, 18(11): 5365-5377. |
[11] | BECKER J, WEINTRAUT T, BENZ S L, et al. Purity of lithium metal electrode and its impact on lithium stripping in solid-state batteries[J]. Nature Communications, 2025, doi: 10.1038/s41467-025-61006-7. |
[12] | CHEN X, JIANG M, DU X, et al. Li2O-enhanced solid electrolyte interphase surpassing lif-only sei for high-performance all-solid-state Li batteries[J]. Advanced Energy Materials, 2025, doi: 10.1002/aenm.202502589. |
[13] | QU Y, SU C, WANG L, et al. Interface engineered e design strategy for ultralong-cycle solid-state lithium batteries over wide temperature range[J]. Angewandte Chemie-International Edition, 2025, doi: 10.1002/anie.202506731. |
[14] | ZHU Q, YANG K, CHEN L, et al. Activating interfacial ion exchange in composite electrolytes to realize high-rate and long-cycling solid-state lithium batteries[J]. Angewandte Chemie-International Edition, 2025, doi: 10.1002/anie.202425221. |
[15] | WU J, YOU Z, LI M, et al. Synergistic reduction and oxidation resistant interface modifier for high-voltage and high-loading solid-state lithium batteries[J]. Advanced Energy Materials, 2025, doi: 10.1002/aenm.202403585. |
[16] | HAN Z, ZHANG R, JIANG J, et al. High-efficiency lithium-ion transport in a porous coordination chain-based hydrogen-bonded framework[J]. Journal of the American Chemical Society, 2023, 145(18): 10149-10158. |
[17] | LI M, HUANG Z, LIANG Y, et al. Accelerating lithium-ion transfer and sulfur conversion via electrolyte engineering for ultra-stable all-solid-state lithium-sulfur batteries[J]. Advanced Functional Materials, 2025, doi: 10.1002/adfm.202413580. |
[18] | GONG J, PENG Q, ZHAO S, et al. Built-in single-ion-conducting polymer bridges for superior ion transport enabling long-life and high-voltage lithium-metal batteries[J]. Energy & Environmental Science, 2025, 18(11): 5511-5523. |
[19] | KWON G, GWON H, BAE Y, et al. Disorder-driven sintering-free garnet-type solid electrolytes[J]. Nature Communications, 2025, doi: 10.1038/s41467-025-58108-7. |
[20] | YI S, ZHOU S, LIU Y, et al. Achieving high ionic conductivity of LATP solid electrolyte via a LiTFSI-assisted cold sintering process[J]. Journal of Materials Chemistry A, 2024, 12(46): 32298-32306. |
[21] | LI W, LI M, WANG S, et al. Superionic conducting vacancy-rich β-Li3N electrolyte for stable cycling of all-solid-state lithium metal batteries[J]. Nature Nanotechnology, 2025, doi: 10.1038/s41565-024-01813-z. |
[22] | LANDGRAF V, TU M, ZHAO W, et al. Disorder-mediated ionic conductivity in irreducible solid electrolytes[J]. Journal of the American Chemical Society, 2025, 147(22): 18840-18852. |
[23] | HOLMES S E, KONDEK J, ZHANG P, et al. LiI-modified glass-ceramic lithium thioborate: From fundamentals to applications in solid-state batteries[J]. Chemistry of Materials, 2025, 37(7): 2642-2649. |
[24] | KAWAGUCHI S, FUKIYA N, EHARA K, et al. Highly deformable, ion-conductive borohydride-substituted sulfide electrolyte for superior performance at low stack pressure[J]. Advanced Materials, 2025, doi: 10.1002/adma.202507963. |
[25] | SHEN K, SHI W, SONG H, et al. Solid catholyte with regulated interphase redox for all-solid-state lithium-sulfur batteries[J]. Advanced Materials, 2025, doi: 10.1002/adma.202417171. |
[26] | KIM K T, KIM J-S, BAECK K H, et al. Surface fluorination shielding of sulfide solid electrolytes for enhanced electrochemical stability in all-solid-state batteries[J]. Advanced Materials, 2025, doi: 10.1002/adma.202416816. |
[27] | ZHANG W, WANG Z, WAN H, et al. Revitalizing interphase in all-solid-state Li metal batteries by electrophile reduction[J]. Nature Materials, 2025, doi: 10.1038/s41563-024-02064-y. |
[28] | ZHANG H, YU P, CUI Z, et al. Enhancing compatibility of halide with sulfide-electrolytes via high oxygen incorporation for robust solid-state batteries[J]. Advanced Functional Materials, 2025, doi: 10.1002/adfm.202510497. |
[29] | WANG S, ZHOU Y, HUANG X, et al. An iodide-chloride solid electrolyte compatible with lithium metal for all-solid-state lithium batteries[J]. ACS applied materials & interfaces, 2025, doi: 10.1021/acsami.5c07580. |
[30] | QIAN L, TU S, WANG Y, et al. Near-saturated coordinated cations in oxyhalide superionic conductors boost high-rate all-solid-state batteries[J]. Journal of the American Chemical Society, 2025, doi: 10.1021/jacs.5c07052. |
[31] | HUANG Y, YU Y, WANG Z, et al. Rational design and realization of more sustainable spinel-like halides as fast ionic conductor for high-voltage all solid-state batteries[J]. Chemical Engineering Journal, 2025, doi: 10.1016/j.cej.2025.164755. |
[32] | DONG S, SHI L, ZHANG Y, et al. "Pseudo-charge-transfer complex" electrolyte enables 490 wh kg-1 lithium metal battery operated from -40 ℃ to 80 ℃[J]. Angewandte Chemie (International ed. in English), 2025, doi: 10.1002/anie.202506750: e202506750-e202506750. |
[33] | CHEN L, GU T, MI J, et al. Homogeneous polymer-ionic solvate electrolyte with weak dipole-dipole interaction enabling long cycling pouch lithium metal battery[J]. Nature Communications, 2025, doi: 10.1038/s41467-025-58689-3. |
[34] | QIN M, MA F, WU Q, et al. Bi-coordinating solvent in EC-free electrolyte to inhibit electrode crosstalk in high-voltage lithium-ion batteries[J]. Etransportation, 2025, doi: 10.1016/j.etran.2025.100434. |
[35] | LEOPOLD M, PFEIFFER F, MUSCHIOL E C, et al. Importance of fluorine in high voltage electrolytes for LNMO||SiGr cell chemistry[J]. Small, 2025, doi: 10.1002/smll.202505254. |
[36] | WU X, SU C-C, LI X, et al. Molecular engineering of ethereal electrolyte for ultrastable Si-based high voltage full cells[J]. Journal of Materials Chemistry A, 2025, doi: 10.1039/d5ta01872b. |
[37] | GU R, ZHANG D, XU S, et al. Thermoresponsive ether-based electrolyte for wide temperature operating lithium metal batteries[J]. Nature Communications, 2025, doi: 10.1038/s41467-025-60524-8. |
[38] | DUAN S, ZHANG L, ZHENG Y, et al. "Rigid exterior, soft interior" design enables high-voltage polyether electrolytes for quasi-solid-state batteries[J]. Angewandte Chemie (International ed. in English), 2025, doi: 10.1002/anie.202502728: e202502728-e202502728. |
[39] | ZHAO C-X, LI Z, CHEN B, et al. Self-adaptive electrolytes for fast-charging batteries[J]. Nature Energy, 2025, doi: 10.1038/s41560-025-01801-0. |
[40] | LIU C, YANG T, YU Q, et al. High-voltage fluoride-free electrolytes for Ni-rich cathodes offering superior water resistance[J]. Acs Sustainable Chemistry & Engineering, 2025, 13(24): 8951-8958. |
[41] | LIU J, CAO J, LI B, et al. Ethyl 2-butene phosphite as a film-forming additive for high voltage lithium-ion batteries[J]. Journal of Power Sources, 2025, doi: 10.1016/j.jpowsour. 2024.235966 . |
[42] | XIE Z, XIA Z, CAI J, et al. Designing high-temperature stable electrolytes: Insights from the degradation mechanisms of boron-containing additives[J]. Journal of the American Chemical Society, 2025, 147(27): 23931-23945. |
[43] | ZHANG W, FENG X, HUANG W, et al. Thermal runaway inhibition of lithium-ion batteries employing thermal-driven phosphazene based electrolytes[J]. Advanced Functional Materials, 2025, doi: 10.1002/adfm.202508688. |
[44] | ZHANG Y, ZHANG Y, WANG X, et al. Trace multifunctional additive enhancing 4.8 V ultra-high voltage performance of Ni-rich cathode and SiOx anode battery[J]. Advanced Energy Materials, 2025, doi: 10.1002/aenm.202403751. |
[45] | ZHENG M, LIU T, WU J, et al. Voltage-induced bromide redox enables capacity restoration of fast-charging batteries[J]. Advanced Materials, 2025, doi: 10.1002/adma.202414207. |
[46] | KO H Y, PARK J, LEE J Y, et al. Modification of cathode surface for sulfide electrolyte-based all-solid-state batteries using sulfurized LiNbO3 coating[J]. Batteries & Supercaps, 2025, doi: 10.1002/batt.202500188. |
[47] | LIU C, LI W, DENG K, et al. A stable all-solid-state lithium metal battery achieved by optimizing the cathode-electrolyte interface through perovskite-coating-stabilized single crystal LiNi0.9Co0.05Mn0.05O2 cathode[J]. Chemical Engineering Journal, 2025,doi: 10.1016/j.cej.2025.164576. |
[48] | YUAN L, PENG W, ZHAN Z, et al. Enhancing ion transport at primary interparticle boundaries of polycrystalline lithium-rich oxide in all-solid-state batteries[J]. Angewandte Chemie (International ed. in English), 2025, doi: 10.1002/anie.202508605: e202508605-e202508605. |
[49] | CHEN H, LIU H-W, LU Y-C, et al. Realizing practical use of LiNiO2 cathode in halide-based all-solid-state lithium metal batteries[J]. Chemical Engineering Journal, 2025, doi: 10.1016/j.cej.2025.165314. |
[50] | LEE J, ZHOU S, FERRARI V C, et al. Halide segregation to boost all-solid-state lithium-chalcogen batteries[J]. Science, 2025, 388(6748): 724-729. |
[51] | SU Y, REN S, LIN Q, et al. In situ solid electrolyte ionic pathway formation in high sulfur loading cathodes for high-performance all-solid-state lithium-sulfur batteries[J]. Advanced Energy Materials, 2025, doi: 10.1002/aenm.202500363. |
[52] | YU Z, SINGH B, YU Y, et al. Suppressing argyrodite oxidation by tuning the host structure for high-areal-capacity all-solid-state lithium-sulfur batteries[J]. Nature Materials, 2025, doi: 10.1038/s41563-025-02238-2. |
[53] | LI H, CUI L, WU F, et al. Kinetically-enhanced gradient modulator layer enables wide-temperature ultralong-life all-solid-state lithium-sulfur batteries[J]. Advanced Energy Materials, 2025, doi: 10.1002/aenm.202501259. |
[54] | LI Q, XIE C, JIANG X, et al. Catalytic solder fuses solid-solid interfaces for all-solid-state lithium-sulfur batteries[J]. Advanced Materials, 2025, doi: 10.1002/adma.202507308. |
[55] | ZHOU K, LU S, MISH C, et al. Tailored cathode composite microstructure enables long cycle life at low pressure for all-solid-state batteries[J]. Acs Energy Letters, 2025, doi: 10.1021/acsenergylett.4c03256. |
[56] | LIN Y, LIU H, HU Y, et al. Sub-micrometer Li6PS5Cl regulated cathodic li kinetics in sulfide based all-solid-state batteries[J]. Physical Chemistry Chemical Physics, 2025, 27(6): 3455-3462. |
[57] | BHADRA A, BRUNISHOLZ M, BONSU J O, et al. Carbon mediated in situ cathode interface stabilization for high rate and highly stable operation of all-solid-state lithium batteries[J]. Advanced Energy Materials, 2025, doi: 10.1002/aenm.202403608. |
[58] | CHENG Z, LIU H, ZHANG M, et al. Realizing four-electron conversion chemistry for all-solid-state Li||I2 batteries at room temperature[J]. Nature Communications, 2025, doi: 10.1038/s41467-025-56932-5. |
[59] | PANG T, WU S, WU H, et al. A high-performance garnet-based all-solid-state battery fabricated through room-temperature ultrasonic welding[J]. Advanced science (Weinheim, Baden-Wurttemberg, Germany), 2025, doi: 10.1002/advs.202504388: e04388-e04388. |
[60] | LIU J, MEI X, WANG J, et al. Dynamically stable and intimately bonded Li/garnet interface for high-areal-capacity solid-state lithium-metal batteries[J]. Advanced Functional Materials, 2025, doi: 10.1002/adfm.202512943. |
[61] | CHENG Z, ZHAO W, WANG Q, et al. Beneficial redox activity of halide solid electrolytes empowering high-performance anodes in all-solid-state batteries[J]. Nature Materials, 2025, doi: 10.1038/s41563-025-02296-6. |
[62] | SUN Y, WU Y, YAN Y, et al. Creep localization empowering high-capacity alloy anodes for durable all-solid-state lithium batteries[J]. Advanced Materials, 2025, doi: 10.1002/adma.202510128. |
[63] | KANG J, KIM J, KIM R, et al. Mechanistic insight into calendar aging of anode-less all-solid-state batteries[J]. Energy Storage Materials, 2025, doi: 10.1016/j.ensm.2025.104164. |
[64] | KIM C, LI Y, JANG I, et al. Pushing the limits: Maximizing energy density in silicon sulfide solid-state batteries[J]. Advanced Materials, 2025, doi: 10.1002/adma.202502300. |
[65] | OH J, CHOI S H, KIM H, et al. Solvent-binder engineering for a practically viable solution process for fabricating sulfide-based all-solid-state batteries[J]. Acs Energy Letters, 2025, 10(6): 2831-2838. |
[66] | HU Z, GAO P, JU S, et al. Dynamic volume compensation realizing Ah-level all-solid-state silicon-sulfur batteries[J]. Nature Communications, 2025, doi: 10.1038/s41467-025-59224-0. |
[67] | SU Y, DENG Y, LUO Y, et al. Ultra-thin lithium-phosphorus-sulfur (LPS) interfacial electrolyte layer for all-solid-state lithium metal battery with high-rate and high-areal-capacity performance[J]. Advanced Functional Materials, 2025, doi: 10.1002/adfm. 202509820. |
[68] | WU Y, ZHANG W, RUI X, et al. Thermal runaway mechanism of composite cathodes for all-solid-state batteries[J]. Advanced Energy Materials, 2025,doi: 10.1002/aenm. 202405183. |
[69] | LIU Y, AN Y, FANG C, et al. Surface-localized phase mediation accelerates quasi-solid-state reaction kinetics in sulfur batteries[J]. Nature Chemistry, 2025, doi: 10.1038/s41557-025-01735-w. |
[70] | KANG J, EOM H, JANG S, et al. Bollard-anchored binder system for high-loading cathodes fabricated via dry electrode process for Li-ion batteries[J]. Advanced Materials, 2025, doi: 10.1002/adma.202416872. |
[71] | LIU H, WANG S, KONG W, et al. Constructing ionic transport network via supramolecular composite binder in cathode for all-solid-state lithium batteries[J]. Angewandte Chemie-International Edition, 2025, 64(28). |
[72] | LI Z-W, LIN F, ZHANG X-D, et al. Stress-relieving protective elastomeric interphase for stable ni-rich cathodes[J]. Advanced Functional Materials, 2025, doi: 10.1002/anie. 202507579. |
[73] | KLOKER G, ANJASS M, BRAUCHLE F, et al. Investigation of expansion and potential of Si-dominant anodes with binder modification in full cells[J]. Journal of Power Sources, 2025, doi: 10.1016/j.jpowsour.2025.237620. |
[74] | HAN X, MAO S, WANG Y, et al. Manipulation of lithium dendrites based on electric field relaxation enabling safe and long-life lithium-ion batteries[J]. Nature Communications, 2025, doi: 10.1038/s41467-025-58818-y. |
[75] | WEN Z, LIU Y, LI K, et al. Boosting the Li-O2 pouch cell beyond 860 wh kg-1 with an O2-enriched localized high-concentration electrolyte[J]. National Science Review, 2025, doi: 10.1093/nsr/nwaf059. |
[76] | LI Z, WANG F, GAO Y, et al. Probing the effect of electrode thermodynamics on reaction heterogeneity in thick battery electrodes[J]. Advanced Materials, 2025, doi: 10.1002/adma.202502299. |
[77] | JEONG H, ZHENG Z, BANSAL P, et al. Curvature-dependent electrochemo-mechanics of silicon during electrochemical cycling[J]. Acs Energy Letters, 2025, 10(7): 3388-3394. |
[78] | CAI J, ZHOU X, LI L, et al. Kinetically dormant Ni-rich layered cathode during high-voltage operation[J]. Advanced Materials, 2025, doi: 10.1002/adma.202419253. |
[79] | MCNULTY R C, JONES K D, DENISON B M G, et al. Singlet oxygen is not the source of ethylene carbonate degradation in nickel-rich Li-ion cells[J]. Energy & Environmental Science, 2025, doi: 10.1039/d5ee00956a. |
[80] | KAELI E, JIANG Z, YANG X, et al. Decoupling first-cycle capacity loss mechanisms in sulfide solid-state batteries[J]. Energy & Environmental Science, 2025, 18(3): 1452-1463. |
[81] | PARANAMANA N C, WERBROUCK A, DATTA A K, et al. Understanding cathode-electrolyte interphase formation in solid state Li-ion batteries via 4D-STEM[J]. Advanced Energy Materials, 2025,doi: 10.1002/aenm.202403904. |
[82] | LI M, YANG X, WEI X, et al. Cathode-electrolyte interphase of Ni-rich layered oxides: Evolving structure and implication on stability[J]. Nano Letters, 2025, 25(7): 2769-2776. |
[83] | PARK S H, NAIK K G, VISHNUGOPI B S, et al. Chemo-mechanical behavior and stability of high-loading cathodes in solid-state batteries[J]. ACS nano, 2025, doi: 10.1021/acsnano.5c04431. |
[84] | JUNG S-J, LEE C, PARK C, et al. Lithiation diagnostics by measuring electrochemodynamics in solid-state batteries[J]. Acs Energy Letters, 2025, 10(7): 3112-3121. |
[85] | HAO S, DAEMI S R, HEENAN T M M, et al. Fast degradation of solid electrolyte in initial cycling processes, tracked in 3D by synchrotron X-ray computed tomography[J]. ACS nano, 2025, 19(22): 20516-20525. |
[86] | ZHANG S, MUELLER L F, MACRAY L, et al. Revealing local diffusion dynamics in hybrid solid electrolytes[J]. Acs Energy Letters, 2025, 10(4): 1762-1771. |
[87] | KO S, OTSUKA H, KIMURA S, et al. Rapid safety screening realized by accelerating rate calorimetry with lab-scale small batteries[J]. Nature Energy, 2025, 10(6): 707-714. |
[88] | LIN Z, YAO Q, YANG S, et al. Highly safe all-solid-state lithium metal battery enabled by interface thermal runaway regulation between lithium metal and solid-state electrolyte[J]. Advanced Functional Materials, 2025, doi: 10.1002/adfm.202424110. |
[89] | LI K, HUANG J, QU X, et al. Void evolution at the Li/LLZO interface: Stack pressure and operating temperature-driven creep effect[J]. ACS applied materials & interfaces, 2025, 17(2): 3146-3162. |
[90] | WANG Y, SHI J, GAO H, et al. Study of void evolution in lithium solid-state batteries: Integrating high-throughput phase-field modeling, experimental validation, and machine learning[J]. Advanced Energy Materials, 2025, doi: 10.1002/aenm.202501616. |
[91] | LIU J, ZHANG Q, FENG Y, et al. Optimization of interfacial contacts in all-solid-state lithium-metal batteries under pressure and temperature modulation and its effect on cycling performance[J]. Journal of Power Sources, 2025, doi: 10.1016/j.jpowsour. 2025.237268. |
[92] | ZHANG B, YUAN B, YAN X, et al. Atomic mechanism of lithium dendrite penetration in solid electrolytes[J]. Nature Communications, 2025, doi: 10.1038/s41467-025-57259-x. |
[93] | YOU Y, ZHANG D, WU Z, et al. Grain boundary amorphization as a strategy to mitigate lithium dendrite growth in solid-state batteries[J]. Nature Communications, 2025, doi: 10.1038/s41467-025-59895-9. |
[94] | SADOWSKI M and ALBE K. Grain boundary transport in the argyrodite-type Li6PS5Br solid electrolyte: Influence of misorientation and anion disorder on Li ion mobility[J]. Advanced Materials Interfaces, 2024, doi: 10.1002/admi.202400423. |
[95] | BANERJEE S and TKATCHENKO A. Non-local interactions determine local structure and lithium diffusion in solid electrolytes[J]. Nature Communications, 2025, doi: 10.1038/ s41467-025-56662-8. |
[96] | LEE K, YANAGI K, ARASHI T, et al. 3D simulation of all-solid-state batteries with real electrode structures derived from X-ray computed tomography[J]. Journal of Power Sources, 2025, doi: 10.1016/j.jpowsour.2025.237821. |
[97] | BEHARA S S and VAN DER VEN A. The crucial role of vacancy concentration in enabling superatomic diffusion in lithium intermetallics[J]. Acs Energy Letters, 2025, 10(4): 1772-1778. |
[98] | YANG Y, YAO N, GAO Y-C, et al. Data-knowledge-dual-driven electrolyte design for fast-charging lithium ion batteries[J]. Angewandte Chemie-International Edition, 2025, doi: 10.1002/anie.202505212. |
[99] | YARI S, CONDE REIS A, PANG Q, et al. Performance benchmarking and analysis of lithium-sulfur batteries for next-generation cell design[J]. Nature Communications, 2025, doi: 10.1038/s41467-025-60528-4. |
[100] | BUGRYNIEC P J, KHANNA S, WOOTTON M, et al. Assessment of the risks posed by thermal runaway within marine Li-ion battery energy storage systems-considering past incidents, current guidelines and future mitigation measures[J]. Journal of Energy Storage, 2025, doi: 10.1016/j.est.2025.117070. |
[1] | 庞超, 丁爽, 张晓琨, 向勇. 局域高浓度电解质溶剂化结构与离子迁移行为模拟研究[J]. 储能科学与技术, 2025, 14(8): 3207-3215. |
[2] | 钟晓晖, 李将渊, 陆玮, 张乾能, 张辉, 郑卓群, 解晶莹, 罗英. 不同荷电区间钛酸锂电池循环容量衰减机制研究[J]. 储能科学与技术, 2025, 14(8): 2960-2969. |
[3] | 马昊远, 吴焱, 王通, 胡锦洋, 李佳, 黄钰期. 基于力-电-温度信号和CNN-BiLSTM模型的磷酸铁锂电池SOC估计[J]. 储能科学与技术, 2025, 14(7): 2865-2874. |
[4] | 郝峻丰, 朱璟, 岑官骏, 乔荣涵, 张新新, 孙蔷馥, 田孟羽, 金周, 詹元杰, 闫勇, 贲留斌, 俞海龙, 刘燕燕, 周洪, 黄学杰. 锂电池百篇论文点评(2025.04.01—2025.05.31)[J]. 储能科学与技术, 2025, 14(7): 2884-2902. |
[5] | 程静飞. 基于孤立森林算法的锂电池内部故障分析策略[J]. 储能科学与技术, 2025, 14(7): 2878-2880. |
[6] | 樊慧敏, 彭浩鸿, 孟辉, 唐梦宏, 易昊昊, 丁静, 刘金成, 徐成善, 冯旭宁. 储能电池模组膨胀力特性研究及仿真分析[J]. 储能科学与技术, 2025, 14(6): 2488-2497. |
[7] | 张文杰, 任东生, 吴宇, 芮新宇, 刘翔, 冯旭宁, 卢兰光. 基于Li10GeP12S2 全固态电池关键材料的热稳定性[J]. 储能科学与技术, 2025, 14(6): 2193-2199. |
[8] | 徐章杰, 孙铮岳, 张鑫焱, 张吉亮, 于颖超, 董闯. FeOOH包覆改性FeS锂离子电池负极材料[J]. 储能科学与技术, 2025, 14(6): 2232-2239. |
[9] | 巫春玲, 王立顶, 卢勇, 耿莉敏, 陈昊, 孟锦豪. 基于白鹭群优化高斯过程回归的锂电池SOH估计方法[J]. 储能科学与技术, 2025, 14(6): 2498-2511. |
[10] | 韩丹丹, 张武卫, 张亮, 王宗江. 核壳结构LiMn1-y Fe y PO4/C正极材料设计与电化学性能研究[J]. 储能科学与技术, 2025, 14(6): 2215-2222. |
[11] | 平金珍, 温沁润. 基于电子图像处理技术的锂电池表面缺陷检测[J]. 储能科学与技术, 2025, 14(6): 2512-2514. |
[12] | 汪红辉, 李嘉鑫, 储德韧, 李彦仪, 许铤. 磷酸铁锂电池存储失效机理及热安全性研究[J]. 储能科学与技术, 2025, 14(5): 1797-1805. |
[13] | 陈英健, 吴尚, 曹元成, 杜宝帅, 王振兴, 欧阳钟文, 汤舜. 磁场分选在废旧锂电池正负极材料回收中的应用[J]. 储能科学与技术, 2025, 14(5): 1918-1927. |
[14] | 许晓茹, 欧建臻, 刘佳伟, 陈智聪, 叶豪, 刘颖隆, 刘英丽, 林泽宇, 刘晶晶, 简俊辉, 罗栩, 范竞敏, 王超, 雷励斌, 梁波. 带嵌入式微通道陶瓷裂解反应器的管式氨燃料电池[J]. 储能科学与技术, 2025, 14(5): 1818-1828. |
[15] | 李志强, 巴义春, 孙广强. 锂电池蜂窝形叉状流道冷板散热研究[J]. 储能科学与技术, 2025, 14(5): 1776-1783. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||