储能科学与技术

• XXXX •    

锂电池百篇论文点评(2025.6.12025.7.31

张新新1, 岑官骏1, 乔荣涵1, 郝峻丰1, 孙蔷馥1, 郑博文1, 谷宇皓1, 田孟羽2, 金周2, 詹元杰2, 闫勇2, 贲留斌1,2, 俞海龙1, 刘燕燕1, 周洪3, 黄学杰1,2   

  1. 1.中国科学院物理研究所,北京 100190
    2.松山湖材料实验室,广东 东莞 523890
    3.中国科学院武汉文献情报中心,湖北省 武汉市 430071

Reviews of selected 100 recent papers for lithium batteries (June. 1, 2025 to July. 31, 2025)

Xinxin ZHANG1, Guanjun CEN1, Ronghan QIAO1, Junfeng HAO1, Qiangfu SUN1, Bowen ZHENG1, Yuhao Gu1, Mengyu TIAN2, Zhou JIN2, Yuanjie ZHAN2, Yong YAN2, Liubin BEN1,2, Hailong YU1, Yanyan LIU1, Hong ZHOU3, Xueji HUANG1,2   

  1. 1.Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
    2.Songshan Lake Materials Laboratory, Dongguan 523890, Guangdong, China
    3.National Science Library (Wuhan), Chinese Academy of Sciences, Wuhan 430071, Hubei, China

摘要:

该文是一篇近两个月的锂电池文献评述,以“lithium”和“batter*”为关键词检索了 Web of Science 从 2025年6月 1日至 2025年7月 31日上线的锂电池研究论文,共有7666篇。首选采用BERTopic主题模型对其摘要文本进行分析,构建锂电池论文的研究主题图,再选择其中100篇加以评论。正极材料的研究集中于高镍层状材料和其他新型材料的掺杂改性、表面包覆、结构设计等。负极材料的研究重点包括硅基负极的结构设计、金属锂负极的界面和体相结构设计。固态电解质的研究包括对聚合物、氧化物、硫化物和卤化物及其复合固态电解质的结构设计以及相关性能研究。其他电解液和添加剂的研究则主要包括不同电解质和溶剂对各类电池材料体系适配的研究,以及对新的功能性添加剂的探索。对固态电池,正极材料的表面包覆、合成方法和复合材料的优化、锂金属负极的界面构筑、其他种类负极的合成有多篇文献报道。此外,锂硫电池和锂空电池也备受关注。电极中的锂离子输运和失效机制、锂沉积形貌和电解质锂扩散路径、全电池热失控分析,固态电解质与锂界面孔洞和枝晶生长机制的理论模拟以及高通量计算和大数据模型在锂电池中应用论文也有多篇。

关键词: 锂电池, 正极材料, 负极材料, 电解质, 电池技术

Abstract:

This bimonthly review paper highlights a comprehensive overview of the latest research on lithium batteries. A total of 7666 online papers from June 1, 2025, to July 31, 2025, were examined through the Web of Science database. Firstly, the BERTopic topic model is used to analyze the abstract text and he research topic map of lithium battery papers was drawn. 100 papers were selected for highlighting in this review. The selected studies cover various aspects of lithium batteries. Cathode materials including Ni-rich layered oxides and other novel materials are improved by doping, surface coating, and microstructural modifications. The cycling performances of Si-based anode are enhanced by structural design. Great efforts have been devoted to interfacial and bulk structure design of lithium metal anode. Studies on solid-state electrolytes focus on the structure design and performances in polymer, oxide, sulfide, and halide electrolytes, as well as their composite forms. In contrast, liquid electrolytes are improved through optimal solvent and lithium salt design for different battery applications and incorporating novel functional additives. For solid-state batteries, the surface coating and synthesis methods of cathode and the optimization of composite cathodes, interface construction of lithium metal anode, as well as the synthesis of other anode types are widely investigated. In addition, lithium-sulfur and lithium-oxygen batteries have also garnered significant attention. There are also many papers on the ion transport and degradation mechanisms in electrodes, lithium deposition morphology and lithium diffusion pathways in electrolytes, the analysis of thermal runaway of full batteries, the theoretical simulation of void formation and dendrite growth mechanisms at solid electrolyte/lithium interfaces, as well as the application of high-throughput computations and big-data modeling in lithium batteries.

Key words: lithium batteries, cathode material, anode material, electrolyte, battery technology

中图分类号: