储能科学与技术

• •    

局域高浓度电解质溶剂化结构与离子迁移行为模拟研究

庞超1,2(), 丁爽2, 张晓琨1(), 向勇1   

  1. 1.电子科技大学 材料与能源学院,四川 成都 611731
    2.中电科蓝天科技股份有限公司,天津 300384
  • 收稿日期:2025-02-12 修回日期:2025-02-28
  • 通讯作者: 张晓琨 E-mail:pc11qdu@163.com;zxk@uestc.edu.cn
  • 作者简介:庞超(2000-),男,硕士在读,主要研究方向未锂电池电解液体系的分子动力学模拟,E-mail:pc11qdu@163.com

Simulation Study of the Solvation Structure and Ion Migration Behavior in Localized High-Concentration Electrolytes

Chao PANG1,2(), Shuang DING2, Xiaokun ZHANG1(), Yong XIANG1   

  1. 1.School of Materials and Energy, University of Electronic Science and Technology of China, Chengdu Sichuan 611731, China
    2.CETC Lantian Technology Co. , Ltd. , Tianjin 300384, China
  • Received:2025-02-12 Revised:2025-02-28
  • Contact: Xiaokun ZHANG E-mail:pc11qdu@163.com;zxk@uestc.edu.cn

摘要:

针对电解质分子间相互作用对Li+输运行为影响尚不明确的问题,本文通过分子动力学(MD)模拟研究了局域高浓度电解质(LHCE)的非均相结构。以1,1,2,2-四氟乙基-2,2,3,3-四氟丙基醚(D2)作为稀释剂,构建了LHCE模型,并深入分析了溶剂分子与稀释剂之间的相互作用,以探讨其对Li+配位结构和迁移行为的影响。研究结果表明,Li+通过重复的离子解离/缔合跳跃机制进行迁移,并通过D2-CIP (阴离子配位单个Li+)界面处加速迁移,D2分子充当了快速传导路径的载体。此外,发现LiFSI: DME: D2 = 1:1.2:2(摩尔比)的电解质配方,存在离子迁移速率极点(转折)效应,并显著增强了锂盐的抗还原性及离子迁移速率。该研究为开发高浓度电解质(HCE)的新型稀释策略提供了重要的理论依据。

关键词: 局域高浓度电解质, 分子动力学, 溶剂化结构, 离子迁移行为

Abstract:

The impact of intermolecular interactions on Li+ transport in electrolytes remains poorly understood. In this study, molecular dynamics (MD) simulations were employed to explore the heterogeneous structure of localized high-concentration electrolytes (LHCEs). 1,1,2,2-tetrafluoroethyl-2,2,3,3-tetrafluoropropylether (D2) was used as diluent to construct the LHCE model. The interactions between solvent molecules and the diluent were analyzed in detail to investigate how these interactions affect the Li+ coordination structure and migration behavior. The results demonstrate that Li+ moves via a repeated ion dissociation/association hopping manner, and accelerate migration through the D2-CIP interface. The D2 molecules act as carriers for the fast transport pathway. In addition, it was found that the electrolyte comprising LiFSI: DME: D2 = 1:1.2:2 (molar ratio) exhibits an ion migration rate extremum (turnover) effect, significantly enhancing both the reduction resistance of the lithium salt and the ionic migration rate. This study provides important theoretical insights for developing novel dilution strategies for high-concentration electrolytes (HCEs).

Key words: Localized high-concentration electrolytes, Molecular dynamics, Solvation structure, Ion migration behavior

中图分类号: