1 |
陆洋, 闫帅帅, 马骁, 等. 低温锂电池电解液的研究与应用 [J]. 储能科学与技术, 2024, 13(7): 2224-2242.
|
|
Yang LU, Shuaishuai YAN, Xiao MA, Zhi LIU, Weili ZHANG, Kai LIU. Low-temperature electrolytes and their application in lithium batteries[J]. Energy Storage Science and Technology, 2024, 13(7): 2224-2242.
|
2 |
DIEDERICHSEN K M, MCSHANE E J, MCCLOSKEY B D. Promising Routes to a High Li+ Transference Number Electrolyte for Lithium Ion Batteries [J]. ACS Energy Letters, 2017, 2(11): 2563-75.
|
3 |
ZHOU P, ZHANG X, XIANG Y, et al. Strategies to enhance Li+ transference number in liquid electrolytes for better lithium batteries [J]. Nano Research, 2023, 16(6): 8055-71.
|
4 |
YAO N, YU L, FU Z-H, et al. Probing the Origin of Viscosity of Liquid Electrolytes for Lithium Batteries [J]. Angewandte Chemie International Edition, 2023, 62(41): e202305331.
|
5 |
CHEN J, ZHANG H, FANG M, et al. Design of Localized High-Concentration Electrolytes via Donor Number [J]. ACS Energy Letters, 2023, 8(4): 1723-34.
|
6 |
REN F, LI Z, CHEN J, et al. Solvent–Diluent Interaction-Mediated Solvation Structure of Localized High-Concentration Electrolytes [J]. ACS Applied Materials & Interfaces, 2022, 14(3): 4211-9.
|
7 |
PARK E, PARK J, LEE K, et al. Exploiting the Steric Effect and Low Dielectric Constant of 1,2-Dimethoxypropane for 4.3 V Lithium Metal Batteries [J]. ACS Energy Letters, 2023, 8(1): 179-88.
|
8 |
HOSSAIN M J, WU Q, MARIN BERNARDEZ E J, et al. The Relationship between Ionic Conductivity and Solvation Structures of Localized High-Concentration Fluorinated Electrolytes for Lithium-Ion Batteries [J]. The Journal of Physical Chemistry Letters, 2023, 14(34): 7718-31.
|
9 |
PEREZ BELTRAN S, CAO X, ZHANG J-G, et al. Influence of diluent concentration in localized high concentration electrolytes: elucidation of hidden diluent-Li+ interactions and Li+ transport mechanism [J]. Journal of Materials Chemistry A, 2021, 9(32): 17459-73.
|
10 |
EFAW C M, WU Q, GAO N, et al. Localized high-concentration electrolytes get more localized through micelle-like structures [J]. Nature Materials, 2023, 22(12): 1531-9.
|
11 |
CAO X, ZOU L, MATTHEWS B E, et al. Optimization of fluorinated orthoformate based electrolytes for practical high-voltage lithium metal batteries [J]. Energy Storage Materials, 2021, 34: 76-84.
|
12 |
LI Q, LIU G, CHENG H, et al. Low-Temperature Electrolyte Design for Lithium-Ion Batteries: Prospect and Challenges [J]. Chemistry – A European Journal, 2021, 27(64): 15842-65.
|
13 |
CAO X, JIA H, XU W, et al. Review—Localized High-Concentration Electrolytes for Lithium Batteries [J]. Journal of The Electrochemical Society, 2021.
|
14 |
MARTíNEZ L, ANDRADE R, BIRGIN E G, et al. PACKMOL: A package for building initial configurations for molecular dynamics simulations [J]. Journal of Computational Chemistry, 2009, 30(13): 2157-64.
|
15 |
BERENDSEN H J C, VAN DER SPOEL D, VAN DRUNEN R. GROMACS: A message-passing parallel molecular dynamics implementation [J]. Computer Physics Communications, 1995, 91(1): 43-56.
|
16 |
DODDA L S, CABEZA DE VACA I, TIRADO-RIVES J, et al. LigParGen web server: an automatic OPLS-AA parameter generator for organic ligands [J]. Nucleic Acids Research, 2017, 45(W1): W331-W6.
|
17 |
PODGORŠEK A, SALAS G, CAMPBELL P S, et al. Influence of Ionic Association, Transport Properties, and Solvation on the Catalytic Hydrogenation of 1,3-Cyclohexadiene in Ionic Liquids [J]. The Journal of Physical Chemistry B, 2011, 115(42): 12150-9.
|
18 |
NOSE S. A UNIFIED FORMULATION OF THE CONSTANT TEMPERATURE MOLECULAR-DYNAMICS METHODS [J]. JOURNAL OF CHEMICAL PHYSICS, 1984, 81(1): 511-9.
|
19 |
BERENDSEN H B, HJC). MOLECULAR-DYNAMICS WITH COUPLING TO AN EXTERNAL BATH [J]. JOURNAL OF CHEMICAL PHYSICS, 1984, 81(8: 3684-90.
|
20 |
HUMPHREY W, DALKE A, SCHULTEN K. VMD: Visual molecular dynamics [J]. Journal of Molecular Graphics, 1996, 14(1): 33-8.
|
21 |
WANG Y, LI Z, HOU Y, et al. Emerging electrolytes with fluorinated solvents for rechargeable lithium-based batteries [J]. Chemical Society Reviews, 2023, 52(8): 2713-63.
|
22 |
YAMADA Y, WANG J, KO S, et al. Advances and issues in developing salt-concentrated battery electrolytes [J]. Nature Energy, 2019, 4(4): 269-80.
|
23 |
SELF J, FONG K D, PERSSON K A. Transport in Superconcentrated LiPF6 and LiBF4/Propylene Carbonate Electrolytes [J]. ACS Energy Letters, 2019, 4(12): 2843-9.
|
24 |
DOKKO K, WATANABE D, UGATA Y, et al. Direct Evidence for Li Ion Hopping Conduction in Highly Concentrated Sulfolane-Based Liquid Electrolytes [J]. J Phys Chem B, 2018, 122(47): 10736-45.
|
25 |
YAO N, CHEN X, SUN S-Y, et al. Identifying the lithium bond and lithium ionic bond in electrolytes [J]. Chem, 2025, 11(1): 102254.
|
26 |
何一涛, 丁飞, 林立, 等. 电极界面浓差极化对锂金属沉积的影响. 物理化学学报[J], 2021, 37(2): 2009001.
|
|
He Yitao. Influence of Interfacial Concentration Polarization on Lithium Metal Electrodeposition. Acta Physico-Chimica Sinica[J], 2021, 37(2): 2009001.
|