储能科学与技术 ›› 2025, Vol. 14 ›› Issue (9): 3301-3310.doi: 10.19799/j.cnki.2095-4239.2025.0220

• 储能材料与器件 • 上一篇    

不同力场下泡沫铜对相变材料传热及控温特性的影响

高启发1(), 张楠1(), 张兆利1, 杜雁霞2, 袁艳平1   

  1. 1.西南交通大学机械工程学院,四川 成都 610031
    2.中国空气动力研究与发展中心空天飞行 空气动力科学与技术全国重点实验室,四川 绵阳 621000
  • 收稿日期:2025-03-06 修回日期:2025-03-31 出版日期:2025-09-28 发布日期:2025-09-05
  • 通讯作者: 张楠 E-mail:qfgao98@163.com;zhangn09@swjtu.edu.cn
  • 作者简介:高启发(1998—),男,硕士研究生,研究方向为相变储能、相变热管理,E-mail:qfgao98@163.com
  • 基金资助:
    国家自然科学基金(52006183);中央高校基本科研业务费专项资金(26822024GF021)

Influence of copper foam on the heat transfer and temperature control characteristics of phase change materials under different force fields

Qifa GAO1(), Nan ZHANG1(), Zhaoli ZHANG1, Yanxia DU2, Yanping YUAN1   

  1. 1.School of Mechanical Engineering, Southwest Jiaotong University, Chengdu 610031, Sichuan, China
    2.State Key Laboratory of Aerodynamics, China Aerodynamics Research and Development Center, Mianyang 621000, Sichuan, China
  • Received:2025-03-06 Revised:2025-03-31 Online:2025-09-28 Published:2025-09-05
  • Contact: Nan ZHANG E-mail:qfgao98@163.com;zhangn09@swjtu.edu.cn

摘要:

基于相变材料(PCM)的潜热蓄热式冷却技术凭借高储能密度和无源控温特性,在航空航天热管理领域具有广阔应用前景。泡沫铜作为PCM常用的导热增强介质,在强化导热的同时会抑制PCM的自然对流。飞行器机动飞行引发的超重、失重及变加速度等复杂力场会与泡沫铜的对流抑制特性相互作用,导致其综合传热强化效应存在不确定性。本工作通过实验分析了不同力场工况下泡沫铜对PCM传热及控温性能的影响。研究结果表明,在正向力场中,泡沫铜的嵌入最高可使PCM熔化时间缩短62.5%,有效控温时长延长153.4%;而在负向力场中,泡沫铜的熔化促进效应随力场强度的增加呈衰减趋势,且复合相变材料(CPCM)后期温度均匀性和有效控温时长较纯PCM略微下降。值得注意的是,泡沫铜的加入可显著提升相变热控单元在复杂力场中的传热稳定性,CPCM在不同力场条件下的熔化时间波动幅度和控温时长波动幅度较纯PCM分别减小86.8%和52.6%。本文研究结果可为飞行器热管理系统在复杂力场条件下的相变材料优化设计提供有价值的理论参考。

关键词: 泡沫铜, 相变材料, 不同力场, 传热性能, 传热稳定性

Abstract:

Phase change material (PCM)-based latent heat storage cooling technology has broad applications in aerospace thermal management because of its high energy storage density and passive temperature regulation capability. Copper foam, which is commonly employed to enhance the thermal conductivity of PCMs, suppresses natural convection while improving heat transfer. Complex force fields, including hypergravity, microgravity, and variable acceleration induced by vehicle maneuvers, interact with this convection suppression and introduce uncertainties in the overall heat transfer enhancement effect. Herein, experiments were conducted to analyze the effects of copper foam on the heat transfer and temperature control performance of PCM under different force field conditions. The results indicated that under positive force fields, incorporating copper foam reduces the PCM melting time by up to 62.5% and extends the effective temperature control time by up to 153.4%. Under negative force fields, the melting enhancement effect of copper foam decreases as the force field intensity increases, and the temperature uniformity and late-stage effective temperature control time of composite phase change materials (CPCMs) slightly decrease compared with that of pure PCM. Notably, the addition of copper foam considerably improves the heat transfer stability of the phase change thermal control unit under complex force fields; the fluctuation amplitudes of the melting time and temperature control duration of CPCMs are reduced by 86.8% and 52.6%, respectively, compared with that of pure PCM. These findings provide valuable theoretical insights for the optimal design of phase change materials in aerospace thermal management systems under complex force field conditions.

Key words: copper foam, phase change materials, different force fields, heat transfer performance, heat transfer stability

中图分类号: