[1] |
LI L, LIN J, WU N Y, et al. Review and outlook on the international renewable energy development[J]. Energy and Built Environment, 2022, 3(2): 139-157. DOI: 10.1016/j.enbenv. 2020. 12.002.
|
[2] |
GÜR T M. Review of electrical energy storage technologies, materials and systems: Challenges and prospects for large-scale grid storage[J]. Energy & Environmental Science, 2018, 11(10): 2696-2767. DOI: 10.1039/C8EE01419A.
|
[3] |
姜竹, 邹博杨, 丛琳, 等. 储热技术研究进展与展望[J]. 储能科学与技术, 2022, 11(9): 2746-2771. DOI: 10.19799/j.cnki.2095-4239. 2021.0538.
|
|
JIANG Z, ZOU B Y, CONG L, et al. Recent progress and outlook of thermal energy storage technologies[J]. Energy Storage Science and Technology, 2022, 11(9): 2746-2771. DOI: 10.19799/j.cnki.2095-4239.2021.0538.
|
[4] |
TAFONE A, ROMAGNOLI A. A novel liquid air energy storage system integrated with a cascaded latent heat cold thermal energy storage[J]. Energy, 2023, 281: 128203. DOI: 10.1016/j.energy.2023.128203.
|
[5] |
SCIACOVELLI A, VECCHI A, DING Y. Liquid air energy storage (LAES) with packed bed cold thermal storage-From component to system level performance through dynamic modelling[J]. Applied Energy, 2017, 190: 84-98. DOI: 10.1016/j.apenergy. 2016.12.118.
|
[6] |
MORGAN R, NELMES S, GIBSON E, et al. An analysis of a large-scale liquid air energy storage system[J]. Proceedings of the Institution of Civil Engineers-Energy, 2015, 168(2): 135-144. DOI: 10.1680/ener.14.00038.
|
[7] |
VECCHI A, LI Y L, DING Y L, et al. Liquid air energy storage (LAES): A review on technology state-of-the-art, integration pathways and future perspectives[J]. Advances in Applied Energy, 2021, 3: 100047. DOI: 10.1016/j.adapen.2021.100047.
|
[8] |
王驿凯, 赵栋霖, 杨曙川, 等. 区域能源系统中热泵储能技术研究与应用综述[J]. 东南大学学报(自然科学版), 2025, 55(3): 839-848.
|
|
WANG Y K, ZHAO D L, YANG S C, et al. Review of pumped thermal energy storage technology and application in district energy systems[J]. Journal of Southeast University (Natural Science Edition), 2025, 55(3): 839-848.
|
[9] |
MCTIGUE J D, WHITE A J. A comparison of radial-flow and axial-flow packed beds for thermal energy storage[J]. Applied Energy, 2018, 227: 533-541. DOI: 10.1016/j.apenergy.2017.08.179.
|
[10] |
SKUNTZ M E, ELANDER R, AL AZAWII M, et al. System efficiency of packed bed TES with radial flow vs. axial flow-Influence of aspect ratio[J]. Journal of Energy Storage, 2023, 72: 108463. DOI: 10.1016/j.est.2023.108463.
|
[11] |
TREVISAN S, WANG W J, GUEDEZ R, et al. Experimental evaluation of an innovative radial-flow high-temperature packed bed thermal energy storage[J]. Applied Energy, 2022, 311: 118672. DOI: 10.1016/j.apenergy.2022.118672.
|
[12] |
WANG C, BIAN Y, YOU Z P, et al. Dynamic analysis of a novel standalone liquid air energy storage system for industrial applications[J]. Energy Conversion and Management, 2021, 245: 114537. DOI: 10.1016/j.enconman.2021.114537.
|
[13] |
ELOUALI A, KOUSKSOU T, EL RHAFIKI T, et al. Physical models for packed bed: Sensible heat storage systems[J]. Journal of Energy Storage, 2019, 23: 69-78. DOI: 10.1016/j.est. 2019.03.004.
|
[14] |
COMSOL Multiphysics[R/OL]. https://www.comsol.com/comsol-multiphysics.
|
[15] |
MEIER A, WINKLER C, WUILLEMIN D. Experiment for modelling high temperature rock bed storage[J]. Solar Energy Materials, 1991, 24(1/2/3/4): 255-264. DOI: 10.1016/0165-1633(91)90066-T.
|
[16] |
GERSTLE W H, SCHROEDER N R, MCLAUGHLIN L P, et al. Experimental testing and computational modeling of a radial packed bed for thermal energy storage[J]. Solar Energy, 2023, 264: 111993. DOI: 10.1016/j.solener.2023.111993.
|