储能科学与技术 ›› 2025, Vol. 14 ›› Issue (9): 3311-3318.doi: 10.19799/j.cnki.2095-4239.2025.0609

• 储能材料与器件 • 上一篇    

面向液态空气储能的新型径向流储冷填充床性能研究

张子澳1(), 王星宇1, 路新亮1,2, 殷勇高3, 王晨1,2()   

  1. 1.石家庄铁道大学机械工程学院低温储能研究中心
    2.石家庄铁道大学河北省新型储能国际联合研究中心,河北 石家庄 050043
    3.东南大学能源与环境学院,江苏 南京 211189
  • 收稿日期:2025-07-07 修回日期:2025-07-21 出版日期:2025-09-28 发布日期:2025-09-05
  • 通讯作者: 王晨 E-mail:zhangziao1006@163.com;wangchen@stdu.edu.cn
  • 作者简介:张子澳(1999—),男,硕士研究生,研究方向为低温储冷填充床,E-mail:zhangziao1006@163.com
  • 基金资助:
    河北省重大科技支撑计划前沿技术专项(242Q9916Z);国家自然科学基金青年科学基金(5240061504)

Performance study of a novel radial-flow cold storage packed bed for liquid air energy storage

Ziao ZHANG1(), Xingyu WANG1, Xinliang LU1,2, Yonggao YIN3, Chen WANG1,2()   

  1. 1.Cryogenic Energy Conversion, Storage and Transportation Centre, School of Mechanical Engineering, Shijiazhuang Tiedao University
    2.International Research Centre for New Energy Storage of Hebei Province, Shijiazhuang Tiedao University, Shijiazhuang 050043, Hebei, China
    3.School of Energy and Environment, Southeast University, Nanjing 211189, Jiangsu, China
  • Received:2025-07-07 Revised:2025-07-21 Online:2025-09-28 Published:2025-09-05
  • Contact: Chen WANG E-mail:zhangziao1006@163.com;wangchen@stdu.edu.cn

摘要:

大规模长时储能技术是实现双碳目标的重要路径之一。其中,液态空气储能因能量密度高、不受地理条件限制、寿命长和对环境友好等优势而备受关注。储冷填充床作为液态空气储能中的关键储冷单元,其热力性能直接影响系统的循环效率与经济性。传统的储冷填充床采用轴向流形式,充冷过程换热流体由底部进入,与储冷材料进行热量交换后由顶部流出,存在压降大、泵功高、速度场波动剧烈等问题,限制了其综合性能的提升。为解决上述问题,本研究提出一种新型的储冷填充床,充冷过程流体由底部进入中心通道,沿径向方向流动,与储冷材料换热后经中心通道流出(即径向流储冷填充床)。通过数值模拟研究径向流储冷填充床在不同流体工作压力下的流速、间隙对流传热系数、压降及㶲效率,并与轴向流储冷填充床进行对比。研究结果表明,在储冷量为150 MWh和流体工作压力0.1 MPa条件下,径向流填充床充放冷过程压降为2 kPa,远低于轴向流82.8 kPa;径向流填充床的㶲效率高达87.7%,显著优于轴向流的59.8%。当工作压力升高至0.8 MPa时,径向流和轴向流储冷填充床充放冷过程压降均显著降低,泵工对㶲效率影响很小,轴向流具有更高的㶲效率达93.1%。因此,径向流储冷填充床更适合运行在低压充放冷工况。本文为优化储冷填充床结构提供了理论支持与设计参考,展示了径向流填充床在工程应用中的良好潜力。

关键词: 液态空气储能, 储冷填充床, 径向流, 轴向流

Abstract:

Large-scale, long-duration energy storage technologies are vital for achieving the dual-carbon goals. Among them, Liquid Air Energy Storage (LAES) has received significant attention due to its high energy density, geographical flexibility, long service life, and environmental friendliness. As the core cold storage unit in LAES, the thermal performance of the packed bed directly impacts the cycle efficiency and economic viability of the system. Traditional cold storage packed beds use an axial-flow design, where the heat transfer fluid enters from the bottom and exits from the top after exchanging heat with the storage material. This design suffers from high pressure drop, large pump power consumption, and severe velocity fluctuations, limiting its overall performance. To overcome these limitations, a novel design of radial-flow cold packed bed is proposed, in which the cooling fluid enters via a central inlet at the bottom, flows radially through the storage material, and exits centrally after heat exchange. Numerical simulations were conducted to analyze the flow velocity, interstitial convective heat transfer coefficient, pressure drop, and exergy efficiency of the radial-flow packed bed under different working fluid pressures, and to compare these results with those of the axial-flow configuration. Results indicate that under a storage capacity of 150 MWh and a fluid pressure of 0.1 MPa, the radial-flow packed bed experiences a pressure drop of only 2 kPa during charge/discharge, markedly lower than the 82.8 kPa observed in the axial-flow bed. The exergy efficiency of the radial-flow system reaches 87.7%, significantly outperforming the 59.8% efficiency of the axial-flow configuration. When the working pressure increases to 0.8 MPa, the pressure drop during the charge/discharge process decreases significantly in both radial- and axial-flow beds. The influence of pumping power on exergy efficiency becomes negligible, and the axial-flow bed achieves a higher exergy efficiency of 93.1%. Therefore, the radial-flow cold storage packed bed is more suitable for low-pressure charge/discharge operating conditions. This study offers theoretical insights and design references for structural optimization of cold packed beds, highlighting the strong potential of radial-flow designs in practical energy storage applications.

Key words: liquid air energy storage, cold storage bed, radial flow, axial flow

中图分类号: