• 储能科学与技术 •
收稿日期:
2025-01-22
修回日期:
2025-02-11
出版日期:
2025-02-24
通讯作者:
李凌
E-mail:yyanine@163.com;liling@usst.edu.cn
作者简介:
谈秀雯(1999-),女,硕士研究生在读,研究方向为电池热管理,E-mail:yyanine@163.com;
基金资助:
Received:
2025-01-22
Revised:
2025-02-11
Online:
2025-02-24
Contact:
Ling LI
E-mail:yyanine@163.com;liling@usst.edu.cn
摘要:
锂离子电池应用广泛但其对温度较为敏感,在实际工作中存在一定热失控风险,尤其对于高倍率充放电条件下的大容量电池来说,其热失控风险将进一步增加。本文通过建立热失控模型,研究了端子过热时锂电池内部热量传播及其导致的热失控特性。发现连接片松动引起的端子过热,会导致电池极耳下方出现较严重的热累积问题。随着加热功率的提升,电池的热失控触发时间大幅提前,且热失控峰值温度也有所提高。同时,将其与底面和正面过热情况进行了对比,发现端子过热导致的热失控升温用时分别减少了17.2%和10.9%,电池将在更短的时间内达到较高的峰值温度。此外,端子过热下电池内部的热量传播特征与电池高倍率充放电导致的极耳下方区域过热相似,由此设计了具有倾斜管道的液冷板并探讨其对于此类过热情况的散热效果。发现该液冷板能够有效抑制锂电池热失控的发生,并提升了电池整体的温度均匀性。相比于传统直流式液冷板,倾斜式液冷板冷却下的电池温度标准差可进一步降低18.9%。该工作为锂电池风险评估及液冷板结构设计提供了参考。
中图分类号:
谈秀雯, 李凌. 局部过热下锂电池热失控特性及其热管理研究[J]. 储能科学与技术, doi: 10.19799/j.cnki.2095-4239.2025.0067.
Xiuwen TAN, Ling LI. Study on the thermal runaway characteristic of lithium-ion batteries and its thermal management under local overheating conditions[J]. Energy Storage Science and Technology, doi: 10.19799/j.cnki.2095-4239.2025.0067.
表2
热失控模型化学参数[16,20]"
参数 | 描述 | 值 |
---|---|---|
Asei | 频率因子(1/s) | 1.667×1015 |
Ane | 2.5×1013 | |
Ape | 2×108 | |
Ae | 5.14×1025 | |
Ea,sei | 反应活化能 (J/mol) | 1.3508×105 |
Ea,ne | 1.3508×105 | |
Ea,pe | 1.03×105 | |
Ea,e | 2.74×105 | |
Hsei | 反应热(J/kg) | 2.57×105 |
Hne | 1.714×106 | |
Hpe | 1.947×105 | |
He | 6.2×105 | |
Csei,0 | 无量纲化参数初始值 (1) | 0.15 |
Cne,0 | 0.75 | |
α0 | 0.04 | |
Ce,0 | 1 | |
nsei | 反应级数 (1) | 1 |
nne | 1 | |
npe,1 | 1 | |
npe,2 | 1 | |
ne | 1 | |
tsei,0 | SEI膜初始厚度 (1) | 0.033 |
Wsei | 材料含量(kg/m3) | 406.9 |
Wne | 406.9 | |
Wpe | 610.4 | |
We | 1438 |
1 | 李致远,鲁锐华,余庆华,等.动力电池热失控特征及防控技术研究分析[J]. 汽车工程, 2024, 46(01): 139-150. |
LI Z Y, LU R H, YU Q H, et al. Research and Analysis of Thermal Runaway Characteristics and Prevention and Control Technology of Power Battery [J]. Automotive Engineering, 2024, 46(01): 139-150. | |
2 | LIN J, LIU X, LI S, et al. A review on recent progress, challenges and perspective of battery thermal management system [J]. International Journal of Heat and Mass Transfer, 2021, 167: 120834. |
3 | 杨续来,袁帅帅,杨文静,等.锂离子动力电池能量密度特性研究进展[J].机械工程学报, 2023, 59(06): 239-254. |
YANG J L, YUAN S S, YANG W J, et al. Research Progress on Energy Density of Li-ion Batteries for EVs[J]. Journal of Mechanical Engineering, 2023, 59(06): 239-254. | |
4 | 陈国贺,吕培召,李孟涵,等.锂离子电池热失控传播特性及其抑制策略研究进展[J]. 储能科学与技术, 2024, 13(07): 2470-2482. |
CHEN G H, LV P Z, LI M H, et al. Research progress on thermal runaway propagation characteristics of lithium-ion batteries and its inhibiting strategies[J]. Energy Storage Science and Technology, 2024, 13(07): 2470-2482. | |
5 | 张大禹,王震坡,刘鹏,等.新能源汽车动力电池衰退机制与健康状态估计研究概述[J]. 机械工程学报, 2024, 60(22): 241-256. |
ZHANG D Y, WANG Z B, LIU P, et al. Overview of Research on Degradation Mechanism and State of Health Estimation for Traction Battery in New Energy Vehicles[J]. Journal of Mechanical Engineering, 2024, 60(22): 241-256. | |
6 | FENG X, OUYANG M, LIU X, et al. Thermal runaway mechanism of lithium ion battery for electric vehicles: A review [J]. Energy Storage Materials, 2018, 10: 246-267. |
7 | 何骁龙,石晓龙,王子阳,等. 过充、过热及其共同作用下车用三元锂离子电池热失控特性 [J]. 储能科学与技术, 2023, 12(01): 218-226. |
HE X L, SHI X L, WANG Z Y, et al. Experimental study on thermal runaway characteristics of vehicle NCM lithium-ion batteries under overcharge, overheating, and their combined effects[J]. Energy Storage Science and Technology, 2023,12(01): 218-226. | |
8 | 宋爽,李福,唐西胜.锂离子电池安全状态评估研究进展[J]. 储能科学与技术, 2023, 12(11): 3545-3555. |
SONG S, LI F, TANG X S. Research progress on the safety-state assessment of lithium-ion batteries[J]. Energy Storage Science and Technology, 2023, 12(11): 3545-3555. | |
9 | 王芳,王峥,林春景,等. 新能源汽车动力电池安全失效潜在原因分析 [J]. 储能科学与技术, 2022, 11(05): 1411-1418. |
WANG F, WANG Z, LIN C J, et al. Analysis on potential causes of safety failure of new energy vehicles[J]. Energy Storage Science and Technology, 2022, 11(05): 1411-1418. | |
10 | 朱鸿章,吴传平,周天念,等. 磷酸铁锂和三元锂电池外部过热条件下的热失控特性[J]. 储能科学与技术, 2022, 11(01): 201-210. |
ZHU H Z, WU C P, ZHOU T N, et al. Thermal runaway characteristics of LiFePO4 and ternary lithium batteries with external overheating[J]. Energy Storage Science and Technology, 2022, 11(01): 201-210. | |
11 | HUANG Z, YU Y, DUAN Q, et al. Heating position effect on internal thermal runaway propagation in large-format lithium iron phosphate battery [J]. Applied Energy, 2022, 325: 119778. |
12 | JIN C, SUN Y, WANG H, et al. Heating power and heating energy effect on the thermal runaway propagation characteristics of lithium-ion battery module: Experiments and modeling [J]. Applied Energy, 2022, 312: 118760. |
13 | MA M, DUAN Q, ZHAO C, et al. Faulty Characteristics and Identification of Increased Connecting and Internal Resistance in Parallel-Connected Lithium-Ion Battery Pack for Electric Vehicles [J]. IEEE Transactions on Vehicular Technology, 2020, 69(10): 10797-10808. |
14 | ZHENG Y, HAN X, LU L, et al. Lithium ion battery pack power fade fault identification based on Shannon entropy in electric vehicles [J]. Journal of Power Sources, 2013, 223: 136-146. |
15 | 刘邦金,汪林威,吴月月,等. 锂离子电池热管理研究进展[J]. 化工学报, 2024, 75(12): 4413-4431. |
LIU B J, WANG L W, WU Y Y, et al. Advances in thermal management of lithium-ion batteries[J]. CIESC Journal, 2024, 75(12): 4413-4431. | |
16 | PENG P, JIANG F. Thermal safety of lithium-ion batteries with various cathode materials: A numerical study [J]. International Journal of Heat and Mass Transfer, 2016, 103: 1008-1016. |
17 | MONIKA K, CHAKRABORTY C, ROY S, et al. An improved mini-channel based liquid cooling strategy of prismatic LiFePO4 batteries for electric or hybrid vehicles [J]. Journal of Energy Storage, 2021, 35: 102301. |
18 | LYU P, LIU X, LIU C, et al. The influence of tab overheating on thermal runaway propagation of pouch-type lithium-ion battery module with different tab connections [J]. International Journal of Heat and Mass Transfer, 2023, 211: 124279. |
19 | SCHAEFFLER S, JOSSEN A. In situ measurement and modeling of internal thermal runaway propagation within lithium-ion cells under local overheating conditions [J]. Journal of Power Sources, 2024, 614: 234968. |
20 | ABADA S, PETIT M, LECOCQ A, et al. Combined experimental and modeling approaches of the thermal runaway of fresh and aged lithium-ion batteries [J]. Journal of Power Sources, 2018, 399: 264-73. |
21 | HUO Y, RAO Z, LIU X, et al. Investigation of power battery thermal management by using mini-channel cold plate [J]. Energy Conversion and Management, 2015, 89: 387-395. |
22 | SUN T, WANG L, REN D, et al. Thermal Runaway Characteristics and Modeling of LiFePO4 Power Battery for Electric Vehicles [J]. Automotive Innovation, 2023, 6(3): 414-424. |
23 | JIN C, SUN Y, WANG H, et al. Model and experiments to investigate thermal runaway characterization of lithium-ion batteries induced by external heating method [J]. Journal of Power Sources, 2021, 504: 230065. |
24 | LIN X-W, ZHOU Z-F, ZHU X-G, et al. Non-uniform thermal characteristics investigation of three-dimensional electrochemical-thermal coupled model for pouch lithium-ion battery [J]. Journal of Cleaner Production, 2023, 417: 137912. |
[1] | 孙中麟, 李嘉波, 田迪, 王志璇, 邢晓静. 基于COA-LSTM和VMD的锂离子电池剩余寿命预测[J]. 储能科学与技术, 2024, 13(9): 3254-3265. |
[2] | 陆继忠, 彭思敏, 李晓宇. 基于多特征量分析和LSTM-XGBoost模型的锂离子电池SOH估计方法[J]. 储能科学与技术, 2024, 13(9): 2972-2982. |
[3] | 胡雪峰, 常先雷, 刘肖肖, 徐威, 张文彬. 适用于宽温度范围的锂离子电池SOC估计方法[J]. 储能科学与技术, 2024, 13(9): 2983-2994. |
[4] | 沈思远, 刘亚坤, 罗栋煌, 李雨珺, 郝伟. 储能锂离子电池模组暂态过电压防护设计与电路研发[J]. 储能科学与技术, 2024, 13(9): 3277-3286. |
[5] | 陈媛, 章思源, 蔡宇晶, 黄小贺, 刘炎忠. 融合多项式特征扩展与CNN-Transformer模型的锂电池SOH估计[J]. 储能科学与技术, 2024, 13(9): 2995-3005. |
[6] | 邢瑞鹤, 翁素婷, 李叶晶, 张佳怡, 张浩, 王雪锋. AI辅助电池材料表征与数据分析[J]. 储能科学与技术, 2024, 13(9): 2839-2863. |
[7] | 何宁, 杨芳芳. 考虑能量和温度特征的锂离子电池早期寿命预测[J]. 储能科学与技术, 2024, 13(9): 3016-3029. |
[8] | 管鸿盛, 钱诚, 孙博, 任羿. 贫数据条件下锂离子电池容量退化轨迹预测方法[J]. 储能科学与技术, 2024, 13(9): 3084-3093. |
[9] | 柯学, 洪华伟, 郑鹏, 李智诚, 范培潇, 杨军, 郭宇铮, 蒯春光. 基于多时间尺度建模自动特征提取和通道注意力机制的锂离子电池健康状态估计[J]. 储能科学与技术, 2024, 13(9): 3059-3071. |
[10] | 田成文, 孙丙香, 赵鑫泽, 付智城, 马仕昌, 赵博, 张旭博. 基于数据驱动的锂离子电池快速寿命预测[J]. 储能科学与技术, 2024, 13(9): 3103-3111. |
[11] | 李清波, 张懋慧, 罗英, 吕桃林, 解晶莹. 基于等效电路模型融合电化学原理的锂离子电池荷电状态估计[J]. 储能科学与技术, 2024, 13(9): 3072-3083. |
[12] | 何智峰, 陶远哲, 胡泳钢, 王其聪, 杨勇. 机器学习强化的电化学阻抗谱技术及其在锂离子电池研究中的应用[J]. 储能科学与技术, 2024, 13(9): 2933-2951. |
[13] | 孙丙香, 杨鑫, 周兴振, 马仕昌, 王志豪, 张维戈. 基于简化阻抗模型和比较元启发式算法的锂离子电池参数辨识方法[J]. 储能科学与技术, 2024, 13(9): 2952-2962. |
[14] | 黄煜峰, 梁焕超, 许磊. 基于卡尔曼滤波算法优化Transformer模型的锂离子电池健康状态预测方法[J]. 储能科学与技术, 2024, 13(8): 2791-2802. |
[15] | 王志勇, 蔡君瑶, 佘英奇, 钟树林, 潘康华. 氮杂环导电高分子改性锂离子电池石墨负极材料[J]. 储能科学与技术, 2024, 13(8): 2511-2518. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||